Description

我的室友最近喜欢上了一个可爱的小女生。马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她。每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度。但是在她生日的前一天,我的室友突然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有装饰物的亮度增加一个相同的自然数 c(即非负整数)。并且由于这个手环是一个圆,可以以任意的角度旋转它,但是由于上面 装饰物的方向是固定的,所以手环不能翻转。需要在经过亮度改造和旋转之后,使得两个手环的差异值最小。在将两个手环旋转且装饰物对齐了之后,从对齐的某个位置开始逆时针方向对装饰物编号 1,2,…,n,其中 n 为每个手环的装饰物个数,第 1 个手环的 i 号位置装饰物亮度为 xi,第 2 个手 环的 i 号位置装饰物亮度为 yi,两个手环之间的差异值为(参见输入输出样例和样例解释): $$\sum_{i=1}^{n}(x_i-y_i)^2$$ 麻烦你帮他计算一下,进行调整(亮度改造和旋转),使得两个手环之间的差异值最小, 这个最小值是多少呢?

Input

输入数据的第一行有两个数n, m,代表每条手环的装饰物的数量为n,每个装饰物的初始亮度小于等于m。
接下来两行,每行各有n个数,分别代表第一条手环和第二条手环上从某个位置开始逆时针方向上各装饰物的亮度。

Output

输出一个数,表示两个手环能产生的最小差异值。
注意在将手环改造之后,装饰物的亮度 可以大于 m。

Sample Input

5 6
1 2 3 4 5
6 3 3 4 5

Sample Output

1

HINT

【样例解释】
需要将第一个手环的亮度增加1,第一个手环的亮度变为: 2 3 4 5 6 旋转一下第二个手环。对于该样例,是将第二个手环的亮度6 3 3 4 5向左循环移动一个位置,使得第二手环的最终的亮度为:3 3 4 5 6。 此时两个手环的亮度差异值为1。

【数据范围】

30%的数据满足n≤500, m≤10;

70%的数据满足n≤5000;

100%的数据满足1≤n≤50000, 1≤m≤100, 1≤ai≤m。

题解

我们假设第二个手环偏移量为 $p$ ,第二个手环增加的亮度为 $c$ 。由于两个手环亮度均可修改,如果第一个手环增加亮度为 $c$ 就相当于第二个手环减小的亮度为 $c$ 。一个容易得到的结论就是: $|c|\leq m$ 。在此基础上,我们要求的就是 $$\min_{\begin{aligned}0\leq p<n~~\\-m\leq c\leq m\end{aligned}}\sum_{i=0}^{n-1}(x_i-y_{(i+p)mod~n}-c)^2$$

将求和式拆开,我们得到 $$\sum_{i=0}^{n-1}(x_i^2+y_i^2+c^2+2y_ic-2x_ic)-2\sum_{i=0}^{n-1}x_iy_{(i+p)mod~n}$$

注意到前面那个求和式与偏移量 $p$ 是没有关系的,后面的求和式是和亮度增量 $c$ 是没有关系的。我们可以求出前式的最小值,与后式的最大值,作差即为答案。前式的最小值很好求,我们只要在 $c$ 的范围内枚举亮度增量即可。而后面这个式子比较麻烦。

对于式子 $\sum\limits_{i=0}^{n-1}x_iy_{(i+p)mod~n}$ 我们试着将第二个手环翻转,即 $y_{-i}=y_i\pmod{n}$ ,那么现在: $\sum\limits_{i=0}^{n-1}x_iy_{(-i+p)mod~n}=\sum\limits_{i=0}^{p}x_iy_{-i+p}+\sum\limits_{i=p+1}^{n-1}x_iy_{-i+p+n}$ 。这玩意不就是多项式卷积的第 $p$ 项和第 $p+n$ 项的系数么。卷积完枚举 $p$ 求个最小值就好了,美滋滋。

 //It is made by Awson on 2018.1.27
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <complex>
#include <iostream>
#include <algorithm>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int INF = ~0u>>;
const double pi = acos(-1.0);
const int N = 5e4*;
void read(int &x) {
char ch; bool flag = ;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || ); ch = getchar());
for (x = ; isdigit(ch); x = (x<<)+(x<<)+ch-, ch = getchar());
x *= -*flag;
}
void write(int x) {
if (x > ) write(x/);
putchar(x%+);
} int n, m, x, L, R[N+], tol, tolx, toly, s, c, tolxy, ans = INF;
dob a[N+], b[N+]; void FFT(dob *A, int o) {
for (int i = ; i < n; i++) if (i > R[i]) swap(A[i], A[R[i]]);
for (int i = ; i < n; i <<= ) {
dob wn(cos(pi/i), sin(pi*o/i)), x, y;
for (int j = ; j < n; j += (i<<)) {
dob w(, );
for (int k = ; k < i; k++, w *= wn) {
x = A[j+k], y = w*A[j+i+k];
A[j+k] = x+y, A[i+j+k] = x-y;
}
}
}
}
void work() {
read(n), read(c); s = n; n--;
for (int i = ; i <= n; i++) read(x), a[i] = x, tol += x*x, tolx -= x;
for (int i = n; i >= ; i--) read(x), b[i] = x, tol += x*x, tolx += x;
m = *n;
for (n = ; n <= m; n <<= ) L++;
for (int i = ; i < n; i++) R[i] = (R[i>>]>>)|((i&)<<(L-));
FFT(a, ), FFT(b, );
for (int i = ; i <= n; i++) a[i] *= b[i];
FFT(a, -);
for (int i = ; i < s; i++) x = int(a[i].real()/n+0.5)+int(a[i+s].real()/n+0.5), tolxy = Max(tolxy, x);
for (int i = -c; i <= c; i++) x = tol+tolx**i+i*i*s-*tolxy, ans = Min(ans, x);
writeln(ans);
}
int main() {
work();
return ;
}

[HNOI 2017]礼物的更多相关文章

  1. AH/HNOI 2017 礼物

    题目链接 描述 两个序列 \(x, y\),可以将一个序列每个值同时加非负整数 \(c\),其中一个序列可以循环移位,要求最小化: \[\sum_{i = 1}^{n}(x_i - y_i) ^ 2 ...

  2. 【HNOI 2017】礼物

    Problem Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个装饰物,并且每个装饰物 ...

  3. [HNOI 2017]单旋

    Description H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据 结构,因为代码好写,功能多,效率高,掌握这种数据结构成为了 H 国的 ...

  4. [HNOI 2017]抛硬币

    Description 题库链接 两人抛硬币一人 \(a\) 次,一人 \(b\) 次.记正面朝上多的为胜.问抛出 \(a\) 次的人胜出的方案数. \(1\le a,b\le 10^{15},b\l ...

  5. [HNOI 2017]影魔

    Description 题库链接 给你一段长度为 \(n\) 的序列 \(K\) . \(m\) 组询问,每次给定左右端点 \(l,r\) .求出满足区间内下述贡献和. 如果一个区间的两个端点是这一个 ...

  6. 【HNOI 2017】大佬

    Problem Description 人们总是难免会碰到大佬.他们趾高气昂地谈论凡人不能理解的算法和数据结构,走到任何一个地方,大佬的气场就能让周围的人吓得瑟瑟发抖,不敢言语.你作为一个 OIer, ...

  7. 【HNOI 2017】影魔

    Problem Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样的灵魂,包括诗人.牧师.帝王.乞丐.奴隶.罪人,当然,还 ...

  8. HNOI 2017

    题目链接 我还是按bzoj AC数量排序做的 4827 这个其实如果推一下(求每个值)式子会发现是个卷积,然后FFT就好了 4826 记不太清了,可以求出每个点左右第一个比他的的点的位置,将点对看成平 ...

  9. [HNOI 2017]大佬

    Description 题库链接 题意简述来自Gypsophila. 你现在要怼 \(m\) 个大佬,第 \(i\) 个大佬的自信值是 \(C_i\) .每次怼大佬之前,你的自信值是 \(mc\),等 ...

随机推荐

  1. JavaWeb学习笔记九 过滤器、注解

    过滤器Filter filter是对客户端访问资源的过滤,符合条件放行,不符合条件不放行,并且可以对目标资源访问前后进行逻辑处理. 步骤: 编写一个过滤器的类实现Filter接口 实现接口中尚未实现的 ...

  2. img之间的间隙问题

    前言:关于基线(base line),中线(middle line),行高(line height)的了解还是比较浅的,所以引用前辈的成果,稍带解释下 1)行高:两行文字之间"基线" ...

  3. 团队作业7——第二次项目冲刺(Beta版本12.06)

    项目每个成员的进展.存在问题.接下来两天的安排. 已完成的内容:队员每个人提出对接下来需要做的事情的看法和意见,将需要做的任务更新到了leangoo中进行管理,产品完成了界面优化的设计,测试复现了之前 ...

  4. 2018上c语言第0次作业

    随笔: 1.翻阅邹欣老师博客关于师生关系博客,并回答下列问题,每个问题的答案不少于500字: (1)最理想的师生关系是健身教练和学员的关系,在这种师生关系中你期望获得来自老师的哪些帮助? 答:对此问题 ...

  5. mongodb 高级操作

    聚合 aggregate 聚合(aggregate)主要用于计算数据,类似sql中的sum().avg() 语法 db.集合名称.aggregate([{管道:{表达式}}]) 管道 管道在Unix和 ...

  6. python 之反射

    通过字符串的形式导入模块 通过字符串的形式,去模块中寻找制定的函数,并执行getattr(模块名,函数名,默认值) 通过字符串的形式,去模块中设置东西setattr(模块名,函数名/变量名,lambd ...

  7. Beta冲刺Day5

    项目进展 李明皇 今天解决的进度 服务器端还未完善,所以无法进行联动调试.对页面样式和逻辑进行优化 明天安排 前后端联动调试 林翔 今天解决的进度 完成维护登录态,实现图片上传,微信开发工具上传图片不 ...

  8. EasyUI中easyui-combobox的onchange事件。

    html: <select id="cbox" class="easyui-combobox" name="dept" style=& ...

  9. python识别验证码——PIL,pytesser,pytesseract的安装

    1.使用Python识别验证码需要安装Python的图像处理模块(PIL.pytesser.pytesseract) (安装过程需要pip,在我的Python中已经安装pip了,pip的安装就不在赘述 ...

  10. MSSQl 事务的使用

    事务具有以下四个特性: 1.原子性 事务的原子性是指事务中包含的所有操作要么全做,要么全不做. 2.一致性 在事务开始以前,数据库处于一致性的状态,事务结束后,数据库也必须处于一致性状态. 3.隔离性 ...