[HNOI 2017]单旋
Description

Input
Output
Sample Input
1 2
1 1
1 3
4
5
Sample Output
1
2
2
2
2
题解
参考了PIPIBoss的做法。
我们手玩一下单旋,发现其如果只改变最大最小值时,主要的性质就是整棵$splay$的形态不会发生很大的改变。
例如旋最小值到根,其实就相当于将最小值的节点取出来,最小值的右儿子连向最小值的父亲。接着再把最小值对应的节点接在原来的根的父亲上。
最大值同理。那么就可以用$LCT$维护了。
对于插入操作,很显然的是这个新插入的节点肯定接向其前驱的右儿子或后继的左儿子。另外,这两个儿子肯定有一个是空的,有一个不空。另外,不空的儿子就是前驱和后继两个中深度较深节点的儿子。
我们将权值离散,找前驱后继就交给$STL-set$,另外还要额外开数组来记录原来$splay$树的形态。
//It is made by Awson on 2017.12.27
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define LD long double
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
using namespace std;
const int N = 1e5;
const int INF = ~0u>>; int m, a[N+], top;
struct Opt {
int opt, x;
}q[N+];
struct Link_Cut_Tree {
int ch[N+][], pre[N+], size[N+], isrt[N+], rev[N+];
set<int>S;
int f[N+], c[N+][], root;
Link_Cut_Tree () {
for (int i = ; i <= N; i++) size[i] = isrt[i] = ;
S.insert(-INF), S.insert(INF);
}
void pushdown(int o) {
if (!o || !rev[o]) return;
int ls = ch[o][], rs = ch[o][];
swap(ch[ls][], ch[ls][]), swap(ch[rs][], ch[rs][]);
rev[ls] ^= , rev[rs] ^= , rev[o] = ;
}
void push(int o) {
if (!isrt[o]) push(pre[o]);
pushdown(o);
}
void pushup(int o) {
if (!o) return;
size[o] = size[ch[o][]]+size[ch[o][]]+;
}
void rotate(int o, int kind) {
int p = pre[o];
ch[p][!kind] = ch[o][kind], pre[ch[o][kind]] = p;
if (isrt[p]) isrt[o] = , isrt[p] = ;
else ch[pre[p]][ch[pre[p]][] == p] = o;
pre[o] = pre[p];
ch[o][kind] = p, pre[p] = o;
pushup(p), pushup(o);
}
void splay(int o) {
push(o);
while (!isrt[o]) {
if (isrt[pre[o]]) rotate(o, ch[pre[o]][] == o);
else {
int p = pre[o], kind = ch[pre[p]][] == p;
if (ch[p][kind] == o) rotate(o, !kind), rotate(o, kind);
else rotate(p, kind), rotate(o, kind);
}
}
}
void access(int o) {
int y = ;
while (o) {
splay(o); size[o] -= size[ch[o][]];
isrt[ch[o][]] = , isrt[ch[o][] = y] = ;
o = pre[y = o];
pushup(o);
}
}
void makeroot(int o) {
access(o), splay(o);
rev[o] ^= , swap(ch[o][], ch[o][]);
}
void link(int x, int y) {
if (!x || !y) return;
makeroot(x); pre[x] = y;
}
void cut(int x, int y) {
if (!x || !y) return;
makeroot(x), access(y), splay(y);
size[y] -= size[x];
ch[y][] = pre[x] = , isrt[x] = ;
}
int query(int x, int y) {
makeroot(x), access(y), splay(y);
return size[ch[y][]]+;
}
int insert(int x) {
if (!root) {
root = x; S.insert(x); return ;
}
int pre = *(--S.lower_bound(x)), nex = *(S.upper_bound(x)), o;
if (pre == -INF) o = nex;
else if (nex == INF) o = pre;
else {
int depx = query(root, pre), depy = query(root, nex);
if (depx > depy) o = pre;
else o = nex;
}
f[x] = o, c[o][x > o] = x; link(o, x); S.insert(x);
return query(root, x);
}
int find_min() {
int o = *(++S.begin()), fa = f[o], child = c[o][];
int ans = query(root, o);
if (o != root) {
cut(o, fa), cut(child, o), link(child, fa), link(root, o);
c[o][] = root, f[root] = o; root = o; f[o] = ; c[fa][] = child, f[child] = fa;
}
return ans;
}
int find_max() {
int o = *(--(--S.end())), fa = f[o], child = c[o][];
int ans = query(root, o);
if (o != root) {
cut(o, fa), cut(child, o), link(child, fa), link(root, o);
c[o][] = root, f[root] = o; root = o; f[o] = ; c[fa][] = child, f[child] = fa;
}
return ans;
}
int del_min() {
int o = *(++S.begin()), fa = f[o], child = c[o][];
int ans = query(root, o);
cut(o, fa), cut(o, child); link(fa, child);
f[child] = fa, c[fa][] = child;
S.erase(S.find(o)); f[o] = c[o][] = c[o][] = ;
if (root == o) root = child, f[child] = ;
return ans;
}
int del_max() {
int o = *(--(--S.end())), fa = f[o], child = c[o][];
int ans = query(root, o);
cut(o, fa), cut(o, child); link(fa, child);
f[child] = fa, c[fa][] = child;
S.erase(S.find(o)); f[o] = c[o][] = c[o][] = ;
if (root == o) root = child, f[child] = ;
return ans;
}
}T; void work() {
scanf("%d", &m);
for (int i = ; i <= m; i++) {
scanf("%d", &q[i].opt);
if (q[i].opt == ) {
scanf("%d", &q[i].x); a[++top] = q[i].x;
}
}
sort(a+, a++top); top = unique(a+, a+top+)-a-;
for (int i = ; i <= m; i++) {
if (q[i].opt == ) printf("%d\n", T.insert(lower_bound(a+, a+top+, q[i].x)-a));
else if (q[i].opt == ) printf("%d\n", T.find_min());
else if (q[i].opt == ) printf("%d\n", T.find_max());
else if (q[i].opt == ) printf("%d\n", T.del_min());
else printf("%d\n", T.del_max());
}
}
int main() {
work();
return ;
}
[HNOI 2017]单旋的更多相关文章
- bzoj4825 [Hnoi2017]单旋
Description H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据结构,因为代码好写,功能多,效率高,掌握这种数据结构成为了 H 国的必 ...
- BZOJ:4825: [Hnoi2017]单旋
Description H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据结构,因为代码好写,功能多,效率高,掌握这种数据结构成为了 H 国的必 ...
- bzoj 4825: [Hnoi2017]单旋 [lct]
4825: [Hnoi2017]单旋 题意:有趣的spaly hnoi2017刚出来我就去做,当时这题作死用了ett,调了5节课没做出来然后发现好像直接用lct就行了然后弃掉了... md用lct不知 ...
- 【BZOJ4825】【HNOI2017】单旋(Link-Cut Tree)
[BZOJ4825][HNOI2017]单旋(Link-Cut Tree) 题面 题面太长,懒得粘过来 题解 既然题目让你写Spaly 那就肯定不是正解 这道题目,让你求的是最大/最小值的深度 如果有 ...
- HNOI2017 单旋
题目描述 网址:https://www.luogu.org/problemnew/show/3721 大意: 有一颗单旋Splay(Spaly),以key值为优先度,总共有5个操作. [1] 插入一个 ...
- 「AHOI / HNOI2017」单旋
「AHOI / HNOI2017」单旋 题目链接 H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据结构,因为代码好写,功能多,效率高,掌握这种 ...
- HNOI2017单旋
单旋 这道题做法贼多,LCT,splay,线段树什么的貌似都行. 像我这种渣渣只会线段树了(高级数据结构学了也不会用). 首先离线所有操作,因为不会有两个点值重复,所以直接离散. 一颗线段树来维护所有 ...
- P3721 [AH2017/HNOI2017]单旋
题目:https://www.luogu.org/problemnew/show/P3721 手玩一下即可AC此题. 结论:插入x后,x要么会成为x的前驱的右儿子,要么成为x的后继的左儿子,这取决于它 ...
- 洛谷P3721 单旋
什么毒瘤...... 题意:模拟一棵单旋splay,求每次插入,splay最值,删除最值的操作次数. 解:乍一看感觉很神,又因为是LCT题单上的,然后就折磨了我好久,最后跑去看题解... 居然是手玩找 ...
随机推荐
- Beta冲刺计划---Day0
Beta阶段报告---Day0 1.需要改进完善的功能 我们上一阶段开发由于开发时间匆忙,对于爬虫耗时的优化没有考虑.优化的空间我在Alpha阶段的总结报告里说过,具体看下图. 这张图显示出爱 ...
- 需求分析&原型改进
需求&原型改进 一.给目标用户展现原型,与目标用户进一步沟通理解需求. 1.用户痛点:需要随时随地练习四则运算,并能看到用户的统计数据. 2.用户反馈:较好地解决练习需求,若能加入班级概念则更 ...
- 如何减小ios安装包大小
以前的老文章了,搬到cnblog 更小的安装包意味着更快的下载安装速度,也往往意味着更快的加载运行速度,是优化ios应用的一个重要方面,本文主要参考<减小iOS应用程序的大小>,在实际测试 ...
- 201621123043 《Java程序设计》第11周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2. 书面作业 本次PTA作业题集多线程 1. 源代码阅读:多线程程序BounceThread 1.1 BallR ...
- 【iOS】swift-ObjectC 在iOS 8中使用UIAlertController
iOS 8的新特性之一就是让接口更有适应性.更灵活,因此许多视图控制器的实现方式发生了巨大的变化.全新的UIPresentationController在实现视图控制器间的过渡动画效果和自适应设备尺寸 ...
- 吝啬的国度 nyoj
吝啬的国度 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 在一个吝啬的国度里有N个城市,这N个城市间只有N-1条路把这个N个城市连接起来.现在,Tom在第S号城市, ...
- 【bug清除】Surface Pro系列使用Drawboard PDF出现手写偏移、卡顿、延迟现象的解决方式
最近自己新买的New Surface Pro在使用Drawboard PDF时,出现了性能问题,即笔迹延迟偏移,卡顿的问题. 排查驱动问题之后,确认解决方案如下: 将Surface的电池调到性能模式, ...
- CSS揭秘(三)形状
Chapter 3 1. 椭圆 椭圆的实现主要依靠 border-radius 属性,该属性确定边框切圆角的半径大小,可以指定数值 px,也可以使用百分比显示 而且该属性非常灵活,四个角可以分别设置 ...
- Python基础学习篇章三
一. Python对象类型 1. 对象是Python最基本的概念,一个Python程序可以分解为模块.语句.表达式.和对象.它们的关系如下:(1)程序由模块构成 (2)模块包含语句 (3)语句包含表达 ...
- Mego开发文档 - 基本保存操作
基本保存操作 在Mego中没有更改跟踪,也就是说所有的新增.更新及删除都需要开发者自行判断.Mego会最为实际的将各个数据操作提交给数据库并执行. 添加数据 using (var db = new O ...