链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3282

题面:

3282: Tree

Time Limit: 30 Sec  Memory Limit: 512 MB
Submit: 2845  Solved: 1424
[Submit][Status][Discuss]

Description

给定N个点以及每个点的权值,要你处理接下来的M个操作。
操作有4种。操作从0到3编号。点从1到N编号。
0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和。
保证x到y是联通的。
1:后接两个整数(x,y),代表连接x到y,若x到Y已经联通则无需连接。
2:后接两个整数(x,y),代表删除边(x,y),不保证边(x,y)存在。
3:后接两个整数(x,y),代表将点X上的权值变成Y。

Input

第1行两个整数,分别为N和M,代表点数和操作数。
第2行到第N+1行,每行一个整数,整数在[1,10^9]内,代表每个点的权值。
第N+2行到第N+M+1行,每行三个整数,分别代表操作类型和操作所需的量。
1<=N,M<=300000

Output

对于每一个0号操作,你须输出X到Y的路径上点权的Xor和。

Sample Input

3 3
1
2
3
1 1 2
0 1 2
0 1 1

Sample Output

3
1
 
 
思路:
模板题,练下手
 
实现代码:
#include<bits/stdc++.h>
using namespace std;
const int M = 3e5+;
const int inf = 0x3f3f3f3f;
int n,m,sz,rt,c[M][],fa[M],v[M],sum[M],st[M],top;
bool rev[M]; inline void up(int x){
int l = c[x][],r = c[x][];
sum[x] = sum[l] ^ sum[r] ^ v[x];
} inline void pushrev(int x){
int t = c[x][];
c[x][] = c[x][]; c[x][] = t;
rev[x] ^= ;
} inline void pushdown(int x){
if(rev[x]){
int l = c[x][],r = c[x][];
if(l) pushrev(l);
if(r) pushrev(r);
rev[x] = ;
}
} inline bool nroot(int x){ //判断一个点是否为一个splay的根
return c[fa[x]][]==x||c[fa[x]][] == x;
} inline void rotate(int x){
int y = fa[x],z = fa[y],k = c[y][] == x;
int w = c[x][!k];
if(nroot(y)) c[z][c[z][]==y]=x;
c[x][!k] = y; c[y][k] = w;
if(w) fa[w] = y; fa[y] = x; fa[x] = z;
up(y);
} inline void splay(int x){
int y = x,z = ;
st[++z] = y;
while(nroot(y)) st[++z] = y = fa[y];
while(z) pushdown(st[z--]);
while(nroot(x)){
y = fa[x];z = fa[y];
if(nroot(y))
rotate((c[y][]==x)^(c[z][]==y)?x:y);
rotate(x);
}
up(x);
} //打通根节点到指定节点的实链,使得一条中序遍历从根开始以指定点结束的splay出现
inline void access(int x){
for(int y = ;x;y = x,x = fa[x])
splay(x),c[x][]=y,up(x);
} inline void makeroot(int x){ //换根,让指定点成为原树的根
access(x); splay(x); pushrev(x);
} inline int findroot(int x){ //寻找x所在原树的树根
access(x); splay(x);
while(c[x][]) pushdown(x),x = c[x][];
splay(x);
return x;
} inline void split(int x,int y){ //拉出x-y的路径成为一个splay
makeroot(x); access(y); splay(y);
} inline void cut(int x,int y){ //断开边
makeroot(x);
if(findroot(y) == x&&fa[y] == x&&!c[y][]){
fa[y] = c[x][] = ;
up(x);
}
} inline void link(int x,int y){ //连接边
makeroot(x);
if(findroot(y)!=x) fa[x] = y;
} int main()
{
int n,m,x,y,op;
scanf("%d%d",&n,&m);
for(int i = ;i <= n;i ++) scanf("%d",&v[i]);
while(m--){
scanf("%d%d%d",&op,&x,&y);
if(op==) split(x,y),printf("%d\n",sum[y]);
else if(op == ) link(x,y);
else if(op == ) cut(x,y);
else if(op == ) splay(x),v[x] = y;
}
return ;
}

bzoj 3282: Tree (Link Cut Tree)的更多相关文章

  1. 【BZOJ 3282】Tree Link Cut Tree模板题

    知道了为什么要换根(changeroot),access后为什么有时要splay,以及LCT的其他操作,算是比较全面的啦吧,,, 现在才知道这些,,,真心弱,,, #include<cstdio ...

  2. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  3. P3690 【模板】Link Cut Tree (动态树)

    P3690 [模板]Link Cut Tree (动态树) 认父不认子的lct 注意:不 要 把 $fa[x]$和$nrt(x)$ 混 在 一 起 ! #include<cstdio> v ...

  4. 【刷题】洛谷 P3690 【模板】Link Cut Tree (动态树)

    题目背景 动态树 题目描述 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor ...

  5. LG3690 【模板】Link Cut Tree (动态树)

    题意 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和.保证x到y是联通的 ...

  6. [BZOJ 2002] [HNOI2010]弹飞绵羊(Link Cut Tree)

    [BZOJ 2002] [HNOI2010]弹飞绵羊(Link Cut Tree) 题面 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一 ...

  7. LuoguP3690 【模板】Link Cut Tree (动态树) LCT模板

    P3690 [模板]Link Cut Tree (动态树) 题目背景 动态树 题目描述 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两 ...

  8. link cut tree 入门

    鉴于最近写bzoj还有51nod都出现写不动的现象,决定学习一波厉害的算法/数据结构. link cut tree:研究popoqqq那个神ppt. bzoj1036:维护access操作就可以了. ...

  9. Link Cut Tree学习笔记

    从这里开始 动态树问题和Link Cut Tree 一些定义 access操作 换根操作 link和cut操作 时间复杂度证明 Link Cut Tree维护链上信息 Link Cut Tree维护子 ...

随机推荐

  1. 【Oracle学习笔记】索引

    1 简介 1)索引是数据库对象之一,用于加快数据的检索,类似于书籍的索引.在数据库中索引可以减少数据库程序查询结果时需要读取的数据量,类似于在书籍中我们利用索引可以不用翻阅整本书即可找到想要的信息. ...

  2. Jquer + Ajax 制作上传图片文件

    没什么 说的  直接 上代码 //选择图片并上传 function selectImg(node){ var f = node.value; var file = node.files[0]; if( ...

  3. springboot源码分析-SpringApplication

    SpringApplication SpringApplication类提供了一种方便的方法来引导从main()方法启动的Spring应用程序 SpringBoot 包扫描注解源码分析 @Spring ...

  4. 浏览器的同源策略及CORS跨域解决方案 DRF

    一个源的定义 如果两个页面的协议,端口(如果有指定)和域名都相同,则两个页面具有相同的源. 举个例子: 下表给出了相对http://a.xyz.com/dir/page.html同源检测的示例: UR ...

  5. 解决select2 在modal中搜索框无效的问题

    $.fn.modal.Constructor.prototype.enforceFocus = function() {};

  6. Python数据挖掘

    Python之所以如此流行,原因在于它的数据分析和挖掘方面表现出的高性能,而我们前面介绍的Python大都集中在各个子功能(如科学计算.矢量计算.可视化等),其目的在于引出最终的数据分析和数据挖掘功能 ...

  7. Centos7 使用 kubeadm 安装Kubernetes 1.13.3

    目录 目录 什么是Kubeadm? 什么是容器存储接口(CSI)? 什么是CoreDNS? 1.环境准备 1.1.网络配置 1.2.更改 hostname 1.3.配置 SSH 免密码登录登录 1.4 ...

  8. bash: lspci: command not found解决方法

    在CentOS虚拟机使得lspci查看硬件信息.使用时,提示bash: lspci: command not found,大多使用/sbin/lspci即可,我发现我的系统中/sbin下也没有.使用y ...

  9. i春秋misc部分writeup

    i春秋misc部分writeup 一.敲击 方方格格,然后看到下面的格式,猜测出是键盘上的布局,然后看这些字母形成的形状想那些字母,就是flag了 2.滴滴滴 放到ctfcack里解密,发现时栅栏密码 ...

  10. python进阶之生成器

    迭代器 什么叫迭代 可以被for循环的就说明他们是可迭代的,比如:字符串,列表,字典,元祖,们都可以for循环获取里面的数据 下面我们看一个代码: number = 12345 for i in nu ...