题意

你有一个\(N*N\)的棋盘,每个格子内有一个整数,初始时的时候全部为\(0\),现在需要维护两种操作:

命令 参数限制 内容
\(1\ x\ y\ A\) \(1\le x,y \le N\),A是正整数 将格子\(x,y\)里的数字加上\(A\)
\(2\ x1\ y1\ x2\ y2\) \(1\le x1\le x2\le N,1\le y1\le y2\le N\) 输出\(x1\ y1\ x2\ y2\)这个矩形内的数字和
\(3\) 终止程序

​ \(1<=N<=500000\),操作数不超过\(200000\)个,内存限制\(20M\)。

题解

这个题是 cdq分治 的裸题吧。

一维:时间(按输入顺序就行了)

二维:\(x\)坐标(cdq分治)

三维:\(y\)坐标(树状数组)

这个题比较裸,但是cdq分治细节还是有一点的(调的错误我可以列一版了。。)

算法讲解

但我想简单讲一下cdq分治(因为网上很多都很坑没讲清楚)

cdq是专门解决多维偏序的问题,比如像这一道题统计二维矩形的权值,或者直接求高维偏序的个数。

如果不用cdq分治,就只能树套树或者KD-tree这种巨型工业数据结构。而且树套树常常空间和常数都很恐怖,并且很难写……

cdq分治是个比较好写的东西,但其中的思想十分的巧妙和神奇。

你应该学过归并排序求逆序对吧,那是最裸的cdq了。他就是利用了左边的答案来更新右边的答案,cdq就是在这个方面不同于普通的分治。

它每次算答案,只能在右边区间算也就是\([mid+1,r]\)。这是为什么可以这样呢,因为你初始给它的序列,按这样算的话,绝对只会算它原序列左边的贡献,不会算到右边去。(想一想,为什么) 这个只需要自己模拟下分治的区间划分和左右区间考虑就行了。

这就可以会强制使你一开始的那一维有序,对答案计算是正确的。(但切记最后给你的序列不一定是按你给它的顺序了!!!)

然后它中间会有一个排序比较的过程,这就可以使第二个维度变得有序了。(最后的序列一定是第二维度有序的) 然后根据前两个维度算答案就行了,后面的维度全都是附加在这两个维度上面的。

总的步骤:

  1. 分开(递归计算左区间和右区间)
  2. 计算(用左区间来统计,右区间来加上贡献)
  3. 合并(将当前序列变得有序)

又回到题解

这道题,就是对于所有操作进行cdq分治(一般都是对于操作进行分治)。

第三维用树状数组统计\(y\)的前缀和就行了,因为\(x\)已经排好序了,所以可以直接算了。

左区间只执行Add操作,右区间只执行Sum操作。

对于一个询问操作,要将它拆成4个询问操作(就是类似询问二维前缀和),加加减减就行了。

注意几个细节(我调了很久的点)

  1. 树状数组清空的时候,下标不是val而是y
  2. 拆矩阵的时候,一定要不要写错下标;

然后多拍几组,写个暴力很容易查出来的。

代码

#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), _end_ = (int)(r); i <= _end_; ++i)
#define Fordown(i, r, l) for(register int i = (r), _end_ = (int)(l); i >= _end_; --i)
#define Set(a, v) memset(a, v, sizeof(a))
using namespace std; inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;} inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar() ) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar() ) x = (x<<1) + (x<<3) + (ch ^ '0');
return x * fh;
} void File() {
#ifdef zjp_shadow
freopen ("P2683.in", "r", stdin);
freopen ("P2683.out", "w", stdout);
#endif
} int n; const int N = 800100;
struct Opt {
int x, y, type, id, val;
inline bool operator < (const Opt &rhs) const {
return (x ^ rhs.x) ? x < rhs.x : type < rhs.type;
}
};
Opt lt[N], tmp[N]; #define lowbit(x) (x & -(x))
struct Fenwick_Tree {
int c[500100];
inline void Add(int pos, int val) { for (; pos <= n; pos += lowbit(pos) ) c[pos] += val; }
inline int Sum(int pos) { int res = 0; for (; pos; pos -= lowbit(pos) ) res += c[pos]; return res; }
inline void Clear(int pos) { for (; pos <= n; pos += lowbit(pos) ) if (c[pos]) c[pos] = 0; else break; }
};
Fenwick_Tree T; int ans[N]; void Cdq(int l, int r) {
if (l == r) return ;
int mid = (l + r) >> 1;
Cdq(l, mid); Cdq(mid + 1, r);
int lp = l, rp = mid + 1, o = l;
while (lp <= mid && rp <= r) {
if (lt[lp] < lt[rp]) {
if (lt[lp].type == 1) T.Add(lt[lp].y, lt[lp].val);
tmp[o ++] = lt[lp ++];
} else {
if (lt[rp].type == 2) ans[lt[rp].id] += lt[rp].val * T.Sum(lt[rp].y);
tmp[o ++] = lt[rp ++];
}
} while (lp <= mid) tmp[o ++] = lt[lp ++];
while (rp <= r) {
if (lt[rp].type == 2) ans[lt[rp].id] += lt[rp].val * T.Sum(lt[rp].y);
tmp[o ++] = lt[rp ++];
} For (i, l, mid) if (lt[i].type == 1) T.Clear(lt[i].y);
For (i, l, r) lt[i] = tmp[i];
} int qcnt, acnt;
inline void Addq(int x, int y, int type, int id, int val) {
lt[++qcnt] = (Opt){x, y, type, id, val};
} int main () {
File() ;
n = read();
for (;;) {
int opt = read();
if (opt == 3) break ;
int xa, ya, xb, yb, val;
if (opt == 1) {
xa = read(); ya = read(); val = read();
Addq(xa, ya, 1, 0, val);
} else {
xa = read(); ya = read();
xb = read(); yb = read();
Addq(xa - 1, ya - 1, 2, (++ acnt), 1);
Addq(xa - 1, yb, 2, acnt, -1);
Addq(xb, ya - 1, 2, acnt, -1);
Addq(xb, yb, 2, acnt, 1);
}
}
Cdq(1, qcnt);
For (i, 1, acnt) printf ("%d\n", ans[i]);
return 0;
}

BZOJ 2683: 简单题(CDQ分治 + 树状数组)的更多相关文章

  1. BZOJ 2683 简单题 cdq分治+树状数组

    题意:链接 **方法:**cdq分治+树状数组 解析: 首先对于这道题,看了范围之后.二维的数据结构是显然不能过的.于是我们可能会考虑把一维排序之后还有一位上数据结构什么的,然而cdq分治却可以非常好 ...

  2. BZOJ2683: 简单题(cdq分治 树状数组)

    Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 2142  Solved: 874[Submit][Status][Discuss] Descripti ...

  3. 【bzoj1176】[Balkan2007]Mokia/【bzoj2683】简单题 CDQ分治+树状数组

    bzoj1176 题目描述 维护一个W*W的矩阵,初始值均为S(题目描述有误,这里的S没有任何作用!).每次操作可以增加某格子的权值,或询问某子矩阵的总权值.修改操作数M<=160000,询问数 ...

  4. BZOJ 2683: 简单题(CDQ 分治)

    题面 Time Limit: 50 Sec  Memory Limit: 128 MB Description 你有一个N*N的棋盘,每个格子内有一个整数,初始时的时候全部为0,现在需要维护两种操作: ...

  5. BZOJ 2683 简单题 ——CDQ分治

    [题目分析] 感觉CDQ分治和整体二分有着很本质的区别. 为什么还有许多人把他们放在一起,也许是因为代码很像吧. CDQ分治最重要的是加入了时间对答案的影响,x,y,t三个条件. 排序解决了x ,分治 ...

  6. BZOJ 1176: [Balkan2007]Mokia( CDQ分治 + 树状数组 )

    考虑cdq分治, 对于[l, r)递归[l, m), [m, r); 然后计算[l, m)的操作对[m, r)中询问的影响就可以了. 具体就是差分答案+排序+离散化然后树状数组维护.操作数为M的话时间 ...

  7. BZOJ 2683: 简单题 [CDQ分治]

    同上题 那你为什么又发一个? 因为我用另一种写法又写了一遍... 不用排序,$CDQ$分治的时候归并排序 快了1000ms... #include <iostream> #include ...

  8. BZOJ 1176 Mokia CDQ分治+树状数组

    1176: [Balkan2007]Mokia Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1854  Solved: 821[Submit][St ...

  9. 【BZOJ4553】[Tjoi2016&Heoi2016]序列 cdq分治+树状数组

    [BZOJ4553][Tjoi2016&Heoi2016]序列 Description 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能 ...

  10. 【bzoj3262】陌上花开 CDQ分治+树状数组

    题目描述 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当且仅当Sa&g ...

随机推荐

  1. ubuntu:通过封装验证码类库一步步安装php的gd扩展

    我相信很多人的lamp环境都是直接复制一堆参数安装进去的,这里有可能成功,也有可能失败,如果是新手,估计要碰到各种错误,就算安装成功,也未必知道那些参数是干嘛的,反正装进去能用就行. 我当初开始的时候 ...

  2. PHP 个人用到的琐碎代码记录

    查找字符串出现次数的方法 substr_count(string,substring,[start],[length]) 函数延迟代码执行若干秒,若成功,返回 0,否则返回 false. sleep( ...

  3. 来了解一下Mysql索引的相关知识:基础概念、性能影响、索引类型、创建原则、注意事项

    索引的基础概念索引类似于书籍的目录,要想找到一本书的某个特定主题,需要先查找书的目录,定位对应的页码:存储引擎使用类似的方式进行数据查询,先去索引当中找到对应的值,然后根据匹配的索引找到对应的数据行 ...

  4. 深入理解Python的字符编码

    原文:http://lukejin.iteye.com/blog/598303 在处理中文的时候,我们有时候会碰到中文乱码的问题. 究其根本原因是正确的字节序列按照错误的编码方式解码成字符 或者正确的 ...

  5. dubbox系列【一】——dubbox简介

    1.dubbox是什么? dubbox是当当网开源的开源分布式服务框架,基于阿里巴巴dubbo. 1个框架 + 2个方案:分布式服务框架 + RPC远程调用方案 + SOA服务治理方案. 2.dubb ...

  6. duilib界面库学习(仿PC微信界面,有服务器,有数据库,可以网络通信)

    客户端代码:https://github.com/TTGuoying/duilib_ChatClient 服务器代码:https://github.com/TTGuoying/duilib_ChatS ...

  7. php程序员的成长之路

    第一阶段:基础阶段(基础PHP程序员) 重点:把LNMP搞熟练(核心是安装配置基本操作) 目标:能够完成基本的LNMP系统安装,简单配置维护:能够做基本的简单系统的php开发:能够在PHP中型系统中支 ...

  8. 网络基础Cisco路由交换二

    三层交换技术 作用: 使用三层交换技术实现VLAN间通信. 三层交换=二层交换+三层转发 基于CEF的快速转发 主要包含两个转发用的信息表: 转发信息库(FIB):FIB类似于路由表,包含路由表中转发 ...

  9. ajax常用实例代码总结新手向参考(一)

    http的交互方法有四种:get.post.put(增加数据).delete(删除数据) put和delete实现用的是get和post   get方式 页面不能被修改,只是获取查询信息.但是提交的数 ...

  10. NLP︱高级词向量表达(三)——WordRank(简述)

    如果说FastText的词向量在表达句子时候很在行的话,GloVe在多义词方面表现出色,那么wordRank在相似词寻找方面表现地不错. 其是通过Robust Ranking来进行词向量定义. 相关p ...