BZOJ_4653_[Noi2016]区间_线段树+离散化+双指针

Description

在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn]。现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置。换句话说,就是使得存在一个 x,使得对于每一个被选中的区间 [li,ri],都有 li≤x≤ri。
对于一个合法的选取方案,它的花费为被选中的最长区间长度减去被选中的最短区间长度。区间 [li,ri] 的长度定义为 ri−li,即等于它的右端点的值减去左端点的值。
求所有合法方案中最小的花费。如果不存在合法的方案,输出 −1。

Input

第一行包含两个正整数 n,m用空格隔开,意义如上文所述。保证 1≤m≤n
接下来 n行,每行表示一个区间,包含用空格隔开的两个整数 li 和 ri 为该区间的左右端点。
N<=500000,M<=200000,0≤li≤ri≤10^9

Output

只有一行,包含一个正整数,即最小花费。

Sample Input

6 3
3 5
1 2
3 4
2 2
1 5
1 4

Sample Output

2

把区间按长度排序。
可以发现我选择一段连续区间的区间一定不会使答案变差。并且合法的两个端点单调。
于是可以用双指针扫一遍,每次确定合法的最短的区间,更新答案。
每次加入/删除一个区间相当于区间加/减,区间求最值操作,这个可以用线段树实现。
区间需要离散化,有用的只有左右端点。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 500050
#define ls p<<1
#define rs p<<1|1
int n,m,turn[N<<1],maxn;
int t[N<<3],add[N<<3];
struct A {
int l,r,lx,rx;
}q[N];
bool cmp1(const A &x,const A &y) {return x.r-x.l<y.r-y.l;}
int p[N<<1];
inline void pushup(int p) {
t[p]=max(t[ls],t[rs]);
}
inline void pushdown(int p) {
int d;
if(d=add[p]) {
t[ls]+=d; t[rs]+=d;
add[ls]+=d; add[rs]+=d;
add[p]=0;
}
}
void update(int l,int r,int x,int y,int v,int p) {
if(x<=l&&y>=r) {
t[p]+=v; add[p]+=v;
return ;
}
pushdown(p);
int mid=(l+r)>>1;
if(x<=mid) update(l,mid,x,y,v,ls);
if(y>mid) update(mid+1,r,x,y,v,rs);
pushup(p);
}
int query(int l,int r,int x,int y,int p) {
if(x<=l&&y>=r) return t[p];
pushdown(p);
int mid=(l+r)>>1,re=0;
if(x<=mid) re=max(re,query(l,mid,x,y,ls));
if(y<mid) re=max(re,query(mid+1,r,x,y,rs));
pushup(p);
return re;
}
int main() {
scanf("%d%d",&n,&m);
int i,x,y;
for(i=1;i<=n;i++) {
scanf("%d%d",&q[i].l,&q[i].r);
p[i]=q[i].l,p[i+n]=q[i].r;
}
sort(p+1,p+2*n+1);
int j=0;p[0]=5343453;
for(i=1;i<=n;i++) {
q[i].lx=lower_bound(p+1,p+n+n+1,q[i].l)-p;
q[i].rx=lower_bound(p+1,p+n+n+1,q[i].r)-p;
}
maxn=2*n;
sort(q+1,q+n+1,cmp1);
//for(i=1;i<=n;i++) printf("%d %d\n",turn[q[i].l],turn[q[i].r]);
int l=1,r=0,ans=1<<30;
while(r<n) {
while(t[1]<m&&r<n) r++,update(1,maxn,q[r].lx,q[r].rx,1,1);
if(t[1]<m) break;
while(t[1]>=m&&l<n) update(1,maxn,q[l].lx,q[l].rx,-1,1),l++;
ans=min(ans,q[r].r-q[r].l-q[l-1].r+q[l-1].l);
}
printf("%d\n",ans<(1<<30)?ans:-1);
}

BZOJ_4653_[Noi2016]区间_线段树+离散化+双指针的更多相关文章

  1. 【题解】P1712 [NOI2016]区间(贪心+线段树)

    [题解]P1712 [NOI2016]区间(贪心+线段树) 一个observe是,对于一个合法的方案,将其线段长度按照从大到小排序后,他极差的来源是第一个和最后一个.或者说,读入的线段按照长度分类后, ...

  2. 2018.08.17 bzoj4653: [Noi2016]区间(线段树+尺取法)

    传送门 将坐标离散化之后直接用尺取法(双指针)+线段树维护. 其实就是说只要目前所有点的被覆盖次数是大于等于m的就移动左指针删除区间更新答案,否则移动右指针加入区间更新答案. 话说忘记排序以及建树的时 ...

  3. [BZOJ4653][NOI2016]区间 贪心+线段树

    4653: [Noi2016]区间 Time Limit: 60 Sec  Memory Limit: 256 MB Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],. ...

  4. 【洛谷 P1712】 [NOI2016]区间 (线段树+尺取)

    题目链接 emmm看起来好像无从下手, \(l_i,r_i\)这么大,肯定是要离散化的. 然后我们是选\(m\)个区间,我们先对这些区间按长度排个序也不影响. 排序后,设我们取的\(m\)个区间的编号 ...

  5. NOI2016 区间 【线段树】

    题目 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置.换句话说,就是使得存在一个 x,使得对于每一个被 ...

  6. 洛谷 P1712 [NOI2016]区间(线段树)

    传送门 考虑将所有的区间按长度排序 考虑怎么判断点被多少区间覆盖,这个可以离散化之后用一棵权值线段树来搞 然后维护两个指针$l,r$,当被覆盖次数最多的点的覆盖次数小于$m$时不断右移$r$,在覆盖次 ...

  7. BZOJ4653 [NOI2016] 区间 【线段树】

    题目分析: 首先思考一个二分答案的做法.我们可以注意到答案具有单调性,所以可以二分答案. 假设当前二分的答案是$ k $.那么按照大小顺序插入每个区间,同时在末端删除会对答案产生影响的区间.这里不妨用 ...

  8. dutacm.club_1094_等差区间_(线段树)(RMQ算法)

    1094: 等差区间 Time Limit:5000/3000 MS (Java/Others)   Memory Limit:163840/131072 KB (Java/Others)Total ...

  9. 【BZOJ4653】【NOI2016】区间(线段树)

    [BZOJ4653][NOI2016]区间(线段树) 题面 BZOJ 题解 \(NOI\)良心送分题?? 既然是最大长度减去最小长度 莫名想到那道反复减边求最小生成树 从而求出最小的比值 所以这题的套 ...

随机推荐

  1. Javascript的console['']几种常用输入方法

    1.console.log是最常用的输入方法,正常化输出语句,还具有print占位符整数(%d||%i),浮点数(%f),对象(%o),字符(%s); 2.console.error输出错误化的语句 ...

  2. Django(二)如何在IIS中部署django项目

    环境配置 windows7 Django 2.0 python 3.6 wfastcgi 3.0 关键步骤 打开CGI功能 控制面板/程序和功能/打开或关闭windwos功能,如图: 安装wfastc ...

  3. truffle 安装以及基本指令

    1. linux下安装方式 $ npm install -g truffle 环境要求: NodeJS 5.0+ Windows,Linux,或Mac OS X 2. 创建工程: $ mkdir te ...

  4. python 定时服务模块

    python定时任务使用方法如下: import sched shelder = sched.scheduler(time.time, time.sleep) shelder.enter(2, 0, ...

  5. AdminIII连接linux Postgresql过程中的几个小问题

    1.postgresql.conf主配置文件中要配置postgresql绑定的IP,如果不设置,可能只绑定本地闭环地址:127.0.0.1,可以设定为0.0.0.0:就包括了一切IPv4地址 2.pg ...

  6. Android Studio布局等XML文件怎么改都恢复原状的问题

    编译时,XML布局文件报错,点击链接进去改,怎么改,一编译就恢复原状,这是什么原因,问题出在点击错误链接进的是中间生成XML文件,这个文件改动是没用的,需要改动原始layout文件才会生效.

  7. erlang进程概述

    一.概述 与大多数的进程相反,Erlang中的并发很廉价,派生出一个进程就跟面向对象的语言中分配一个对象的开销差不多. 在启动一个复杂的运算时,启动运算.派生进程以及返回结果后,所有进程神奇的烟消云散 ...

  8. RESTful规范建议

    RESTful概述 RESTful是目前最流行的一种互联网软件架构.它结构清晰.符合标准.易于理解.扩展方便,所以正得到越来越多网站的采用. REST是Representational State T ...

  9. Ext Js v6.2.0.103 Sencha Cmd 命令

    Sencha Cmd v6.2.0.103 Sencha Cmd 提供几种全局开关命令. 在大多数案例中, 第一步是在Sencha SDK基础上创建应用 例如 Ext JS 或 Sencha Touc ...

  10. Linux的安装(虚拟机环境)与基础配置

    一.背景 本文介绍如何安装虚拟机VMware以及如果在虚拟机上安装Linux系统以及Linux安装完毕之后的基础配置 需要准备的东西有VMware以及Linux镜像文件 二.下载安装VMware 下载 ...