一眼二分图博弈,于是我们可以拿到69分的好成绩。

二分图暴力加边的数目是O(n^2)的,于是我们考虑网络流优化建图,将alice的每个牌向其的颜色和编号节点连边,bob的每个牌由其颜色和编号节点向其连边,之后在分别和源汇连边,我们发现我们现在是要找哪些点在所有最大流的方案中都有流量流入,我们发现这样的点在跑完最大流后的残留网络上一定是源点所不能到达的,因为否则我们可以通过把这条路径以及S->i的边取反即可得到反例,所以我们直接跑一遍最大流再在残留网络上bfs一遍即可。

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <queue>
#define N 100500
#define inf 0x7fffffff
using namespace std;
int e=,head[N];
struct edge{
int u,v,f,next;
}ed[N<<];
void add(int u,int v,int f){
ed[e].u=u;ed[e].v=v;ed[e].f=f;
ed[e].next=head[u];head[u]=e++;
ed[e].u=v;ed[e].v=u;ed[e].f=;
ed[e].next=head[v];head[v]=e++;
}
int dep[N],S,T;
bool bfs(){
memset(dep,,sizeof dep);
queue<int> q;q.push(S);dep[S]=;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=head[x];i;i=ed[i].next){
if(ed[i].f&&!dep[ed[i].v]){
dep[ed[i].v]=dep[x]+;
q.push(ed[i].v);
}
}
}
return dep[T]!=;
}
int dfs(int x,int f){
if(x==T||!f)return f;
int ans=;
for(int i=head[x];i;i=ed[i].next){
if(ed[i].f&&dep[ed[i].v]==dep[x]+){
int nxt=dfs(ed[i].v,min(f,ed[i].f));
ans+=nxt,f-=nxt;ed[i].f-=nxt,ed[i^].f+=nxt;
if(!f)break;
}
}
if(!ans)dep[x]=-;
return ans;
}
int n,m,n1,n2,x[N],y[N];
int main(){
// freopen("test.in","r",stdin);
scanf("%d%d",&n,&m);
scanf("%d",&n1);
for(int i=;i<=n1;i++)scanf("%d%d",&x[i],&y[i]);
scanf("%d",&n2);
for(int i=n1+;i<=n1+n2;i++)scanf("%d%d",&x[i],&y[i]);
S=n1+n2+n+m+;T=S+;
for(int i=;i<=n1;i++){
add(S,i,);
add(i,n1+n2+x[i],);
add(i,n1+n2+n+y[i],);
}
for(int i=n1+;i<=n1+n2;i++){
add(i,T,);
add(n1+n2+x[i],i,);
add(n1+n2+n+y[i],i,);
}
while(bfs())dfs(S,inf);
for(int i=;i<=n1;i++){
if(dep[i])puts("");
else puts("");
}
}

loj536 「LibreOJ Round #6」花札的更多相关文章

  1. loj536「LibreOJ Round #6」花札(二分图博弈)

    loj536「LibreOJ Round #6」花札(二分图博弈) loj 题解时间 很明显是二分图博弈. 以某个点为起点,先手必胜的充要条件是起点一定在最大匹配中. 判断方法是看起点到该点的边有流量 ...

  2. 【LOJ#536】「LibreOJ Round #6」花札

    题目链接 题目描述 「UniversalNO」的规则如下:每张牌有一种颜色和一个点数.两个人轮流出牌,由 Alice 先手,最开始牌堆为空,出的人可以出任意牌(放到牌堆顶),之后出的牌必须和当时牌堆顶 ...

  3. loj #547. 「LibreOJ β Round #7」匹配字符串

    #547. 「LibreOJ β Round #7」匹配字符串   题目描述 对于一个 01 串(即由字符 0 和 1 组成的字符串)sss,我们称 sss 合法,当且仅当串 sss 的任意一个长度为 ...

  4. [LOJ#531]「LibreOJ β Round #5」游戏

    [LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...

  5. [LOJ#530]「LibreOJ β Round #5」最小倍数

    [LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...

  6. [LOJ#516]「LibreOJ β Round #2」DP 一般看规律

    [LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...

  7. [LOJ#515]「LibreOJ β Round #2」贪心只能过样例

    [LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...

  8. [LOJ#525]「LibreOJ β Round #4」多项式

    [LOJ#525]「LibreOJ β Round #4」多项式 试题描述 给定一个正整数 k,你需要寻找一个系数均为 0 到 k−1 之间的非零多项式 f(x),满足对于任意整数 x 均有 f(x) ...

  9. [LOJ#526]「LibreOJ β Round #4」子集

    [LOJ#526]「LibreOJ β Round #4」子集 试题描述 qmqmqm有一个长为 n 的数列 a1,a2,……,an,你需要选择集合{1,2,……,n}的一个子集,使得这个子集中任意两 ...

随机推荐

  1. ubuntu18.04 安装mysql 5.7.22

    后台下载,脱离终端控制 后台下载,可以节省ssh资源占用,且不会因为ssh连接断开而导致下载失败,适用于操作远端云服务器 wget -b 启动后台下载 -o 指定logfile(记录下载进度信息) w ...

  2. ajax-------封装

    function ajax(url, fnSucc, fnFaild){ //1.创建Ajax对象 var oAjax=null; if(window.XMLHttpRequest) { oAjax= ...

  3. Python并发编程-RabbitMQ消息队列

    RabbitMQ队列 RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统.他遵循Mozilla Public License开源协议. MQ全称为Message Queue, 消息队列 ...

  4. Msys+MinGW编译VLC

      说明:本文只是对官方文档进行简单的翻译总结,旨在帮助一些英文不太好的朋友.官方文档请见wiki.videolan.org/Win32CompileMSYSNew. Msys是MinGW的一个辅助工 ...

  5. ACCA AI来袭会议笔记

    ACCA AI来袭会议笔记 Technology in Accounting 调研报告: http://cn.accaglobal.com/news/professional_report.html ...

  6. iOS9自动布局神器StackView

    http://www.jianshu.com/p/767f72b7d754 这篇文章紧跟上边autolayout的一些小技巧,如果你没有看过,不防先看下<你真的会用autolayout吗?> ...

  7. day11_jsp/EL/JSTL学习笔记

    一.jsp概述 JSP全称是Java Server Pages,它和servle技术一样,都是SUN公司定义的一种用于开发动态web资源的技术. JSP实际上就是Servlet. JSP这门技术的最大 ...

  8. hadoop is running beyond virtual memory limits问题解决

    单机搭建了2.6.5的伪分布式集群,写了一个tf-idf计算程序,分词用的是结巴分词,使用standalone模式运行没有任何问题,切换到伪分布式模式运行一直报错: hadoop is running ...

  9. java基础语法3

    逻辑运算符 &:与,和有共同的,必须条件都满足才是true 有false就返回false,必须都是true才返回true |:或者,其中有一个满足条件就返回true ^亦或,相同是false, ...

  10. ubantu和虚拟机tools 安装 小问题集结

    一.虚拟机 就安装虚拟机而言,个人觉得还是比较简易的,毕竟VMware workstation pro 是一个开源的软件,只要在网上搜索即可,这里我提供一个虚拟机的资源: 链接:http://pan. ...