题目链接:

  TP

题解:

    可能是我比较纱布,看不懂题解,只好自己想了……

  先附一个离线版本题解[Ivan]

  我们考虑对于询问区间是可以差分的,然而这并没有什么卵用,然后考虑怎么统计答案。

  首先LCA一定是z的祖先(这里说的祖先包括自己,以下祖先均为此概念)节点,也就是是说我们只要计算出每个祖先节点的贡献就可以了,再考虑每个祖先的贡献如何计算。

  我们发现对于深度其实是该点到root的路径点数,所以我们可以这样想,我们询问z的祖先的答案,就是在计算有对于给定区间有多少个点经过了z的祖先。

  那么思路到这里就很清晰了,我们先把每个点到root的路径上的点权都加1,在询问的时候用历史版本做差分即可,那么带永久化标记的主席树+树剖啊QwQ。

  至于时间复杂度,有理有据的$O(nlog^2)$。

代码:

  

 #define Troy 

 #include <bits/stdc++.h>

 using namespace std;

 inline int read(){
int s=,k=;char ch=getchar();
while(ch<''|ch>'') ch=='-'?k=-:,ch=getchar();
while(ch>&ch<='') s=s*+(ch^),ch=getchar();
return s*k;
} const int N=5e4+,mod=; int n,Q; struct edges{
int v;edges *last;
}edge[N<<],*head[N];int cnt; inline void push(int u,int v){
edge[++cnt]=(edges){v,head[u]};head[u]=edge+cnt;
} class Persistent_Segment_tree{
public:
inline void add(int pos,int l,int r){
add(root[pos-],root[pos],,n,l,r);
}
inline int query(int last,int pos,int l,int r){
return query(root[last-],root[pos],,n,l,r,);
}
inline void build(){
root[]=tree;
root[]->lc=tree;
root[]->rc=tree;
cnt_tree=;
}
inline int out(){
return cnt_tree;
}
private:
struct Tree{
Tree *lc,*rc;
int sign_per,val;
Tree(){sign_per=val=;lc=rc=NULL;}
}tree[N<<],*root[N<<];int cnt_tree;
inline void add(Tree *p,Tree *&u,int l,int r,int x,int y){
u=tree+cnt_tree;cnt_tree++;
*u=*p;
u->val+=y-x+;
u->val%=mod;
if(x<=l&&r<=y){;u->sign_per++;return;}
int mid=l+r>>;
if(x>mid) add(p->rc,u->rc,mid+,r,x,y);
else if(y<=mid) add(p->lc,u->lc,l,mid,x,y);
else add(p->lc,u->lc,l,mid,x,mid),add(p->rc,u->rc,mid+,r,mid+,y);
}
inline int query(Tree *p,Tree *u,int l,int r,int x,int y,int sign_p){
if(x<=l&&r<=y){
return (sign_p*1ll*(r-l+)%mod+u->val-p->val)%+mod;
}
int mid=l+r>>,ret=;
if(y>mid) ret+=query(p->rc,u->rc,mid+,r,x,y,sign_p+u->sign_per-p->sign_per);
if(x<=mid) ret+=query(p->lc,u->lc,l,mid,x, y, sign_p+u->sign_per-p->sign_per);
return ret%;
}
}war; int fa[N],g[N],size[N],heavy[N],tid[N],idx,deep[N],L[N],R[N]; inline void dfs(int x){
size[x]=;
for(edges *i=head[x];i;i=i->last) if(i->v!=fa[x]){
deep[i->v]=deep[x]+,fa[i->v]=x,dfs(i->v);
size[x]+=size[i->v];
if(size[heavy[x]]<size[i->v])
heavy[x]=i->v;
}
} inline void dfs(int x,int grand){
tid[x]=++idx;
g[x]=grand;
if(heavy[x]){
dfs(heavy[x],grand);
for(edges *i=head[x];i;i=i->last) if(i->v!=fa[x]&&i->v!=heavy[x]){
dfs(i->v,i->v);
}
}
} inline void add(int x){
L[x]=idx+;
int t=x;
while(g[x]!=){
++idx;
war.add(idx,tid[g[x]],tid[x]);
x=fa[g[x]];
}
++idx,war.add(idx,tid[],tid[x]);
R[t]=idx;
} inline int query(int x,int l,int r){
int ret=;
while(g[x]!=){
(ret+=war.query(L[l],R[r],tid[g[x]],tid[x]))%=mod;
x=fa[g[x]];
}
ret+=war.query(L[l],R[r],tid[],tid[x]);
return ret%mod;
} int main(){
n=read(),Q=read();
for(int i=;i<=n;++i){
int x=read()+;
push(x,i),push(i,x);
}
dfs();dfs(,);idx=;
war.build();
for(int i=;i<=n;++i){
add(i);
}
while(Q--){
int l=read()+,r=read()+,z=read()+;
printf("%d\n",(query(z,l,r)%mod+mod)%mod);
}
}

【BZOJ 3626】 [LNOI2014]LCA【在线+主席树+树剖】的更多相关文章

  1. bzoj 3626 [LNOI2014]LCA(离线处理+树链剖分,线段树)

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1272  Solved: 451[Submit][Status ...

  2. BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2050  Solved: 817[Submit][Status ...

  3. BZOJ 3626: [LNOI2014]LCA( 树链剖分 + 离线 )

    说多了都是泪啊...调了这么久.. 离线可以搞 , 树链剖分就OK了... -------------------------------------------------------------- ...

  4. bzoj 3626: [LNOI2014]LCA 离线+树链剖分

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 426  Solved: 124[Submit][Status] ...

  5. BZOJ 3626 [LNOI2014]LCA 树剖+(离线+线段树 // 在线+主席树)

    BZOJ 4012 [HNOI2015]开店 的弱化版,离线了,而且没有边权(长度). 两种做法 1 树剖+离线+线段树 这道题求的是一个点zzz与[l,r][l,r][l,r]内所有点的lcalca ...

  6. [BZOJ 3626] [LNOI2014] LCA 【树链剖分 + 离线 + 差分询问】

    题目链接: BZOJ - 3626 题目分析 考虑这样的等价问题,如果我们把一个点 x 到 Root 的路径上每个点的权值赋为 1 ,其余点的权值为 0,那么从 LCA(x, y) 的 Depth 就 ...

  7. BZOJ 3626 [LNOI2014]LCA:树剖 + 差分 + 离线【将深度转化成点权之和】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3626 题意: 给出一个n个节点的有根树(编号为0到n-1,根节点为0,n <= 50 ...

  8. bzoj 3626 : [LNOI2014]LCA (树链剖分+线段树)

    Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q ...

  9. BZOJ 3626: [LNOI2014]LCA 树链剖分 线段树 离线

    http://www.lydsy.com/JudgeOnline/problem.php?id=3626 LNOI的树链剖分题没有HAOI那么水,学到的东西还是很多的. 我如果现场写,很难想出来这种题 ...

  10. BZOJ 3626: [LNOI2014]LCA(树剖+差分+线段树)

    传送门 解题思路 比较有意思的一道题.首先要把求\(\sum\limits_{i=l}^r dep[lca(i,z)]\)这个公式变一下.就是考虑每一个点的贡献,做出贡献的点一定在\(z\)到根节点的 ...

随机推荐

  1. spring boot + mybatis + druid配置实践

    最近开始搭建spring boot工程,将自身实践分享出来,本文将讲述spring boot + mybatis + druid的配置方案. pom.xml需要引入mybatis 启动依赖: < ...

  2. JAVA调用数据库存储过程

    下面将举出JAVA对ORACLE数据库存储过程的调用          ConnUtils连接工具类:用来获取连接.释放资源 复制代码 package com.ljq.test; import jav ...

  3. Git分支创建与合并

    分支管理是Git支持多人协作和版本控制的关键,参照廖雪峰对Git的介绍,对真实开发环境中Git的使用结合实践进行梳理. 摘自:廖雪峰的官方网站 在实际开发中,我们应该按照几个基本原则进行分支管理: 首 ...

  4. strtok函数读写冲突问题

    先上测试代码 #include "stdafx.h" #include <iostream> using namespace std; int _tmain(int a ...

  5. activeMq的入门程序

    生产者 1.导入相关依赖 2.交给Spring管理,写入相关配置JmsTemplate @RunWith(SpringJUnit4ClassRunner.class) @ContextConfigur ...

  6. Invoke-ASCmd 部署SSAS database

    Install-Module -Name SqlServer -RequiredVersion 21.0.17099 -AllowClobberInvoke-ASCmd -Server 10.162. ...

  7. php里进程创建和分析

    pcntl_fork()函数创建一个子进程,这个子进程仅PID(进程号) 和PPID(父进程号)与其父进程不同成功时,在父进程执行线程内返回产生的子进程的PID,在子进程执行线程内返回0.失败时,在 ...

  8. 20岁少年小伙利用Python_SVM预测股票趋势月入十万!

      在做数据预处理的时候,超额收益率是股票行业里的一个专有名词,指大于无风险投资的收益率,在我国无风险投资收益率即是银行定期存款. pycharm + anaconda3.6开发,涉及到的第三方库有p ...

  9. JavaScript里面的循环方法小结

    一,原生JavaScript中的循环: for 循环代码块一定的次数,它有三个参数,来决定代码块的循环次数,第一个是初始值,第二个是终止值,第三个参数是变化规则: //for循环 for(var i ...

  10. 字典的.get方法

    字典的.get方法表示是dict.get(key,default)用于判断建是否存在,存在返回键对应的值,不存在返回指定的default值 dict = {'a':1,'b':2} dict.get( ...