题目链接:

  TP

题解:

    可能是我比较纱布,看不懂题解,只好自己想了……

  先附一个离线版本题解[Ivan]

  我们考虑对于询问区间是可以差分的,然而这并没有什么卵用,然后考虑怎么统计答案。

  首先LCA一定是z的祖先(这里说的祖先包括自己,以下祖先均为此概念)节点,也就是是说我们只要计算出每个祖先节点的贡献就可以了,再考虑每个祖先的贡献如何计算。

  我们发现对于深度其实是该点到root的路径点数,所以我们可以这样想,我们询问z的祖先的答案,就是在计算有对于给定区间有多少个点经过了z的祖先。

  那么思路到这里就很清晰了,我们先把每个点到root的路径上的点权都加1,在询问的时候用历史版本做差分即可,那么带永久化标记的主席树+树剖啊QwQ。

  至于时间复杂度,有理有据的$O(nlog^2)$。

代码:

  

 #define Troy 

 #include <bits/stdc++.h>

 using namespace std;

 inline int read(){
int s=,k=;char ch=getchar();
while(ch<''|ch>'') ch=='-'?k=-:,ch=getchar();
while(ch>&ch<='') s=s*+(ch^),ch=getchar();
return s*k;
} const int N=5e4+,mod=; int n,Q; struct edges{
int v;edges *last;
}edge[N<<],*head[N];int cnt; inline void push(int u,int v){
edge[++cnt]=(edges){v,head[u]};head[u]=edge+cnt;
} class Persistent_Segment_tree{
public:
inline void add(int pos,int l,int r){
add(root[pos-],root[pos],,n,l,r);
}
inline int query(int last,int pos,int l,int r){
return query(root[last-],root[pos],,n,l,r,);
}
inline void build(){
root[]=tree;
root[]->lc=tree;
root[]->rc=tree;
cnt_tree=;
}
inline int out(){
return cnt_tree;
}
private:
struct Tree{
Tree *lc,*rc;
int sign_per,val;
Tree(){sign_per=val=;lc=rc=NULL;}
}tree[N<<],*root[N<<];int cnt_tree;
inline void add(Tree *p,Tree *&u,int l,int r,int x,int y){
u=tree+cnt_tree;cnt_tree++;
*u=*p;
u->val+=y-x+;
u->val%=mod;
if(x<=l&&r<=y){;u->sign_per++;return;}
int mid=l+r>>;
if(x>mid) add(p->rc,u->rc,mid+,r,x,y);
else if(y<=mid) add(p->lc,u->lc,l,mid,x,y);
else add(p->lc,u->lc,l,mid,x,mid),add(p->rc,u->rc,mid+,r,mid+,y);
}
inline int query(Tree *p,Tree *u,int l,int r,int x,int y,int sign_p){
if(x<=l&&r<=y){
return (sign_p*1ll*(r-l+)%mod+u->val-p->val)%+mod;
}
int mid=l+r>>,ret=;
if(y>mid) ret+=query(p->rc,u->rc,mid+,r,x,y,sign_p+u->sign_per-p->sign_per);
if(x<=mid) ret+=query(p->lc,u->lc,l,mid,x, y, sign_p+u->sign_per-p->sign_per);
return ret%;
}
}war; int fa[N],g[N],size[N],heavy[N],tid[N],idx,deep[N],L[N],R[N]; inline void dfs(int x){
size[x]=;
for(edges *i=head[x];i;i=i->last) if(i->v!=fa[x]){
deep[i->v]=deep[x]+,fa[i->v]=x,dfs(i->v);
size[x]+=size[i->v];
if(size[heavy[x]]<size[i->v])
heavy[x]=i->v;
}
} inline void dfs(int x,int grand){
tid[x]=++idx;
g[x]=grand;
if(heavy[x]){
dfs(heavy[x],grand);
for(edges *i=head[x];i;i=i->last) if(i->v!=fa[x]&&i->v!=heavy[x]){
dfs(i->v,i->v);
}
}
} inline void add(int x){
L[x]=idx+;
int t=x;
while(g[x]!=){
++idx;
war.add(idx,tid[g[x]],tid[x]);
x=fa[g[x]];
}
++idx,war.add(idx,tid[],tid[x]);
R[t]=idx;
} inline int query(int x,int l,int r){
int ret=;
while(g[x]!=){
(ret+=war.query(L[l],R[r],tid[g[x]],tid[x]))%=mod;
x=fa[g[x]];
}
ret+=war.query(L[l],R[r],tid[],tid[x]);
return ret%mod;
} int main(){
n=read(),Q=read();
for(int i=;i<=n;++i){
int x=read()+;
push(x,i),push(i,x);
}
dfs();dfs(,);idx=;
war.build();
for(int i=;i<=n;++i){
add(i);
}
while(Q--){
int l=read()+,r=read()+,z=read()+;
printf("%d\n",(query(z,l,r)%mod+mod)%mod);
}
}

【BZOJ 3626】 [LNOI2014]LCA【在线+主席树+树剖】的更多相关文章

  1. bzoj 3626 [LNOI2014]LCA(离线处理+树链剖分,线段树)

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1272  Solved: 451[Submit][Status ...

  2. BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2050  Solved: 817[Submit][Status ...

  3. BZOJ 3626: [LNOI2014]LCA( 树链剖分 + 离线 )

    说多了都是泪啊...调了这么久.. 离线可以搞 , 树链剖分就OK了... -------------------------------------------------------------- ...

  4. bzoj 3626: [LNOI2014]LCA 离线+树链剖分

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 426  Solved: 124[Submit][Status] ...

  5. BZOJ 3626 [LNOI2014]LCA 树剖+(离线+线段树 // 在线+主席树)

    BZOJ 4012 [HNOI2015]开店 的弱化版,离线了,而且没有边权(长度). 两种做法 1 树剖+离线+线段树 这道题求的是一个点zzz与[l,r][l,r][l,r]内所有点的lcalca ...

  6. [BZOJ 3626] [LNOI2014] LCA 【树链剖分 + 离线 + 差分询问】

    题目链接: BZOJ - 3626 题目分析 考虑这样的等价问题,如果我们把一个点 x 到 Root 的路径上每个点的权值赋为 1 ,其余点的权值为 0,那么从 LCA(x, y) 的 Depth 就 ...

  7. BZOJ 3626 [LNOI2014]LCA:树剖 + 差分 + 离线【将深度转化成点权之和】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3626 题意: 给出一个n个节点的有根树(编号为0到n-1,根节点为0,n <= 50 ...

  8. bzoj 3626 : [LNOI2014]LCA (树链剖分+线段树)

    Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q ...

  9. BZOJ 3626: [LNOI2014]LCA 树链剖分 线段树 离线

    http://www.lydsy.com/JudgeOnline/problem.php?id=3626 LNOI的树链剖分题没有HAOI那么水,学到的东西还是很多的. 我如果现场写,很难想出来这种题 ...

  10. BZOJ 3626: [LNOI2014]LCA(树剖+差分+线段树)

    传送门 解题思路 比较有意思的一道题.首先要把求\(\sum\limits_{i=l}^r dep[lca(i,z)]\)这个公式变一下.就是考虑每一个点的贡献,做出贡献的点一定在\(z\)到根节点的 ...

随机推荐

  1. mysql基础优化-explain的使用-mysql死锁

    MySQL的优化 主要包括三个方面,首先是SQL语句的优化,其次是表结构的优化(这里主要指索引的优化),最后是服务器配置的优化. 一.SQL语句的优化 在 where 及 order by 涉及的列上 ...

  2. 你不能错过.net 并发解决方案

    BlockingCollection集合是一个拥有阻塞功能的集合,它就是完成了经典生产者消费者的算法功能.所以BlockingCollection 很适合构造流水线模式的并发方案 BlockingCo ...

  3. Android性能优化之UI渲染性能优化

    版权声明:本文出自汪磊的博客,未经作者允许禁止转载. 本篇博客主要记录一些工作中常用的UI渲染性能优化及调试方法,理解这些方法对于我们编写高质量代码也是有一些帮助的,主要内容包括介绍CPU,GPU的职 ...

  4. javascript简单介绍

    ECMAScript 1.语法 2.变量:只能使用var定义,如果在函数的内容使用var定义,那么它是一个局部变量,如果没有使用var它是一个全局的.弱类型! 3.数据类型:原始数据类型(undefi ...

  5. Mysql精华版(命令大全)

    数据库的操作 a) 创建数据库:create database 库名[库选项]; b) 查看数据库:show databases;  show create database 库名; c) 删除数据库 ...

  6. 40款非常棒的 jQuery 插件和制作教程(系列一)

    jQuery 在现在的 Web 开发项目中扮演着重要角色,jQuery 让网站有更好的可用性和用户体验,让访问者对网站留下非常好的印象.jQuery以其插件众多.独特.轻量以及支持大规模的网站开发闻名 ...

  7. 在SQL Server 2008 Management Studio中修改表字段顺序

    有时我们可能需要为一个已存在的数据库表添加字段,并且想让这个字段默认排的靠前一些,这时就需要为表字段重新进行排序,默认情况下在Management Studio中调整顺序并保存时会提示"不允 ...

  8. Mybatis 系列5

    上篇系列4中 为大家介绍了mybatis中别名的使用,以及其源码.本篇将为大家介绍TypeHandler, 并简单分析其源码. Mybatis中的TypeHandler是什么? 无论是 MyBatis ...

  9. Django Channels简明实践

    1.安装,如果你已经安装django1.9+,那就不要用官方文档的安装指令了,把-U去掉,直接用: sudo pip install channels 2.自定义的普通Channel的名称只能包含a- ...

  10. 基于ThreadPoolExecutor,自定义线程池简单实现

    一.线程池作用 在上一篇随笔中有提到多线程具有同一时刻处理多个任务的特点,即并行工作,因此多线程的用途非常广泛,特别在性能优化上显得尤为重要.然而,多线程处理消耗的时间包括创建线程时间T1.工作时间T ...