一:什么是异常?

  异常即是一个事件,该事件会在程序执行过程中发生,影响了程序的正常执行。

  一般情况下,在python无法正常处理程序时就会发生一个异常(异常是python对象,表示一个错误)

  异常就是程序运行时候发生错误的信号(在程序出现错误的时候,则会产生一个异常,若程序没有处理他,则会抛出该异常,程序的运行也随之终止),在python中,错误触发的异常如下:

aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAHaA1wDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD5m8UNF/wkurZRyftc3Rx/fPtWZuh/uP8A99j/AArQ8U/8jPq//X5N/wChmsutTIk3Q/3H/wC+x/hVrTrOHULnyvnj4JzuB/pVGtTw5/yEh/uGgC//AMIvD/z2f8hR/wAIvD/z2f8AIVtV22heGrRU0l2imu7yW8jaZHtpBEkODkEsuDzjP6etNK5DlY8v/wCEXh/57P8AkKP+EXh/57P+Qr3Px3Z6Hb+Gr8WsGnxXi7MCFEEg+dc9Oema8stLSe/uY7e2hkuJ5DhIokLMx9AByabVhKVzn/8AhF4f+ez/AJCj/hF4f+ez/kK2+lJUlXZi/wDCLw/89n/IUf8ACLw/89n/ACFdBJZzxW0Vw8EiW8pZY5WQhHK43AHocZGcdM1DQF2Yv/CLw/8APZ/yFH/CLw/89n/IVtUUBcxf+EXh/wCez/kKP+EXh/57P+QreeB0iSRlIR87W7HFE0EluVEilCyhgD1waAucpqmkw6bGj7nk3HGMgY/Ss3dD/cf/AL7H+Fb/AIo/494f98/yrnKCiTdD/cf/AL7H+FG6H+4//fY/wqOigCTdD/cf/vsf4Ubof7j/APfY/wAKjooAk3Q/3H/77H+FG6H+4/8A32P8KjooAk3Q/wBx/wDvsf4Ubof7j/8AfY/wqOigCTdD/cf/AL7H+FG6H+4//fY/wqOigCTdD/cf/vsf4Ubof7j/APfY/wAKjooAk3Q/3H/77H+FG6H+4/8A32P8KjooAk3Q/wBx/wDvsf4Ubof7j/8AfY/wqOigCTdD/cf/AL7H+FG6H+4//fY/wqOigCTdD/cf/vsf4Ubof7j/APfY/wAKjooAk3Q/3H/77H+FG6H+4/8A32P8KjooAk3Q/wBx/wDvsf4Ubof7j/8AfY/wqOigCTdD/cf/AL7H+FG6H+4//fY/wqOigCTdD/cf/vsf4Ubof7j/APfY/wAKjooAk3Q/3H/77H+FG6H+4/8A32P8KjooAk3Q/wBx/wDvsf4Ubof7j/8AfY/wqOigCTdD/cf/AL7H+FG6H+4//fY/wqOigCTdD/cf/vsf4Ubof7j/APfY/wAKjooAk3Q/3H/77H+FG6H+4/8A32P8KjooAk3Q/wBx/wDvsf4Ubof7j/8AfY/wqOigCTdD/cf/AL7H+FG6H+4//fY/wqOigCTdD/cf/vsf4Ubof7j/APfY/wAKjooAk3Q/3H/77H+FG6H+4/8A32P8KjooAk3Q/wBx/wDvsf4Ubof7j/8AfY/wqOigCTdD/cf/AL7H+FG6H+4//fY/wqOigCTdD/cf/vsf4Ubof7j/APfY/wAKjooAk3Q/3H/77H+FG6H+4/8A32P8KjooAk3Q/wBx/wDvsf4Ubof7j/8AfY/wqOigCTdD/cf/AL7H+FG6H+4//fY/wqOigCTdD/cf/vsf4Ubof7j/APfY/wAKjooAk3Q/3H/77H+FG6H+4/8A32P8KjooAk3Q/wBx/wDvsf4Ubof7j/8AfY/wqOigCTdD/cf/AL7H+FG6H+4//fY/wqOigCTdD/cf/vsf4Ubof7j/APfY/wAKjooAk3Q/3H/77H+FG6H+4/8A32P8KjooAk3Q/wBx/wDvsf4Ubof7j/8AfY/wqOigCTdD/cf/AL7H+FG6H+4//fY/wqOigCTdD/cf/vsf4Ubof7j/APfY/wAKjooAk3Q/3H/77H+FG6H+4/8A32P8KjooAk3Q/wBx/wDvsf4Ubof7j/8AfY/wqOigCTdD/cf/AL7H+FG6H+4//fY/wqOigCTdD/cf/vsf4Ubof7j/APfY/wAKjooAk3Q/3H/77H+FG6H+4/8A32P8KjooAk3Q/wBx/wDvsf4Ubof7j/8AfY/wqOigCTdD/cf/AL7H+FG6H+4//fY/wqOigDU8U/8AIz6v/wBfk3/oZq14R8D6145vJ7fR7Ge7aCF5pGihd1QKjMFJVThm2lVB6sQKq+Kf+Rn1f/r8m/8AQzVvwLc2Nt4lgOozfZ7SSKeFpTJIiqXidF3mMhtm5huA6rkdDTWwiTV/h7r/AIe0R9T1fTbnSIxcJbpDqFvJBJKWVm3IGUBgNnODkbl45qh4c/5CQ/3DWvrHhu18PeFWW+n06bW5bxTb/wBnahHdkQBG8zzDE7Io3GPb0Y/P2xWZ4Vt5LrV0iiXc7I2BnHalu7L+tF/X4Dk1FXeh0te4317cRadpVnausMl1FgzMu7YoTJwMjnpXj39gX/8Azw/8fX/GuzvfE+o3tjbQHSfKltwPKniuQGU7cZ6dCO1dlGLjNOpFtdTzK9WM6bVKolKzs7rfoddp3w2uNZ06LTorCXybnaiXv2JtiA4HmbjwcDnqM/jXO+GdBl+H3xwtdF8+G8aG4WHznt1O4OgYEK27a3IGQc9Rmuvf4zXVv4E03TNPsb201i0tEtjNvjMZKx7Q4O7rkBsFT0I75Hj15Fruoas+p3EksmoPJ5xufNAff2IIPBGBjHTFfKYHF5/meNnWx9BUaEE4xgk22+bSTeunLpo7a7HZGhl2X0PZ0a/tJyak22rLTVJep1+jz6fbeFZfEN+scd5c6k1vLJDodrdxRqsalU8p2RI92WOVXJ2nkc5k02PR9Qvr3TNIso9Lvb7UHW1XW9OEscyfKBbbvnaBlLNyvPIy64Fctb6h4stL64vYNU1GG8ucedcR3zLJLjpuYNk496is5/E2n29zBa319bQXJJnihuyiykjB3ANhsj1r6L2U/wCV/wBW/wAhfWaP86+9ef8AmdBrd1f3vw58L6ZFawTSyXd1biOCyiMpZTFtVWVd2455wctxnNTM0+geD/CE1loNjPeXc1xDNLdaek7TMs2FiIdTz24w3YEVy9ifEemWxt7O7u7S3MqzeVBdFE8wY2vgNjcMDB68Ct248Qa7B4d0ex0y61GwubdJ1u5IbryxNvkLjlXy3BPXuTT9nUX2X9wvrFFq3OvvRrav4OsPEF5e6RpEUEE2kas0MksYHFpI3Lu3VhEwILHOAw9K4DxPf2mpa7eT2FulrY7tkESKFxGoCqTj+IgAk9ySa39G83w/oOpLaR3L6tqMBs5C2xIoYSwLbSHJcsFA5VcZPXiuc/sC/wD+eH/j6/40lSqLSz+7+v8Ah2xvE0Xrzr71/X/DIk066isLfdMROJGyIBg7cH7x9D6Cqd8uLlm84XAf5hIDyfr6H2qx/YF//wA8P/H1/wAaP7Av/wDnh/4+v+NV7Of8r+4j29H+dfejlfFH/HvD/vn+Vc5XV+M7Cext7bz49m5zjkHOB7fWuUrNpp2Z0xkpJOLugooopFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAanin/kZ9X/6/Jv/AEM1Y8E6raaL4mtLy93LCgkUTIm9oHZGVJQvcoxVwP8AZqv4p/5GfV/+vyb/ANDNbXw6m1PUfEmmafb6xqenxQGe5iGnzMJUIiZnEIBGJHVNgx1JGc9KaEdB8TfE+lalp9xHb63/AMJFf30tlNJcIkwWIwWvlSEmZFZnkds5A6ICTk4Hmf2qaygnmt5pIJlQbZImKsMsAcEe1etT/EXV30D/AISKw1jxHLZ2t7HZ3GleIdWe+tb0OjsVJURBlAQhkKnh1OecV5DdndZ3RwBlRwP99ajZv+uit+Fi3ZpFf/hKNZ/6C9//AOBL/wCNH/CUaz/0F7//AMCX/wAao2sKT3CRySeUjHl9u7H0Hr/nIou4Pst3NBu3eW7JuxjODjNVzS7mfs4fyovf8JRrP/QXv/8AwJf/ABo/4SjWf+gvf/8AgS/+NZlFHNLuHs4fyo0/+Eo1n/oL3/8A4Ev/AI0f8JRrP/QXv/8AwJf/ABrMoo5pdw9nD+VGn/wlGs/9Be//APAl/wDGj/hKNZ/6C9//AOBL/wCNZlFHNLuHs4fyo1NR8UaymmWjrq98rNNKCwuXBICx47+5/Osv/hLtd/6DWo/+BUn+NGp/8gmz/wCu83/oMdUbDT7rVLpLaztpbu4fO2KBC7nHJwBzS5pN2TK9nD+VF7/hLtd/6DWo/wDgVJ/jR/wl2u/9BrUf/AqT/GtbxN4Fu/D9ld3T2OoRQR3rwJLPCyp5Yxhydo+8SMHocHrXJ1PPLuP2UP5UaNx4i1W72+fqd5Nt6eZcO2PzNQ/2tff8/tx/39b/ABrbuvBy23hxNUN7C0LM+2ZGYrJwAqKm0Op3CQFmAX5eD68zSb11LSSWhb/ta+/5/bj/AL+t/jR/a19/z+3H/f1v8aXTtIv9XaRbGyuL1o13OLeJpCo9TgHApNN0i+1mZobCyuL6VV3GO2iaRgPUgA8Uhh/a19/z+3H/AH9b/Gj+1r7/AJ/bj/v63+NNtNMvL+8FpbWs9zdEkeRDGWfjr8oGeMVo+J9LtNJ1C2S2S4WCW2inaO4cGRSwyy5Cgdfajt5gUP7Wvv8An9uP+/rf40f2tff8/tx/39b/ABps1q0moSW9vbToxkKpbv8APKOeFOAMn8B9KLrTruxigkubWa3jnXfC8sZUSL6qT1HuKAHf2tff8/tx/wB/W/xo/ta+/wCf24/7+t/jS3ukX+nQ2813ZXFrFcLuhkmiZFkHHKkjkcjp6iqdAFv+1r7/AJ/bj/v63+NH9rX3/P7cf9/W/wAa29P8HLe+H5tTN7CIUZd8wZsQjB3qybdzNkxDKZUbuT6czR1sHmW/7Wvv+f24/wC/rf40f2tff8/tx/39b/GqlFAFv+1r7/n9uP8Av63+NH9rX3/P7cf9/W/xqpRQBb/ta+/5/bj/AL+t/jR/a19/z+3H/f1v8aqUUAW/7Wvv+f24/wC/rf40f2tff8/tx/39b/GqlFAFv+1r7/n9uP8Av63+NH9rX3/P7cf9/W/xqpRQBb/ta+/5/bj/AL+t/jR/a19/z+3H/f1v8aqUUAW/7Wvv+f24/wC/rf40f2tff8/tx/39b/GqlFAFv+1r7/n9uP8Av63+NH9rX3/P7cf9/W/xqpRQBb/ta+/5/bj/AL+t/jR/a19/z+3H/f1v8aqUUAW/7Wvv+f24/wC/rf40f2tff8/tx/39b/GqlFAFv+1r7/n9uP8Av63+NH9rX3/P7cf9/W/xqpRQBb/ta+/5/bj/AL+t/jR/a19/z+3H/f1v8aqUUAW/7Wvv+f24/wC/rf40f2tff8/tx/39b/GqlFAFv+1r7/n9uP8Av63+NH9rX3/P7cf9/W/xqpRQBb/ta+/5/bj/AL+t/jR/a19/z+3H/f1v8aqUUAW/7Wvv+f24/wC/rf40f2tff8/tx/39b/GqlFAFv+1r7/n9uP8Av63+NH9rX3/P7cf9/W/xqpRQBb/ta+/5/bj/AL+t/jR/a19/z+3H/f1v8aqUUAW/7Wvv+f24/wC/rf40f2tff8/tx/39b/GqlFAFv+1r7/n9uP8Av63+NH9rX3/P7cf9/W/xqpRQBb/ta+/5/bj/AL+t/jR/a19/z+3H/f1v8aqUUAW/7Wvv+f24/wC/rf40f2tff8/tx/39b/GqlFAFv+1r7/n9uP8Av63+NH9rX3/P7cf9/W/xqpRQBb/ta+/5/bj/AL+t/jR/a19/z+3H/f1v8aqUUAW/7Wvv+f24/wC/rf40f2tff8/tx/39b/GqlFAFv+1r7/n9uP8Av63+NH9rX3/P7cf9/W/xqpRQBb/ta+/5/bj/AL+t/jR/a19/z+3H/f1v8aqUUAW/7Wvv+f24/wC/rf40f2tff8/tx/39b/GqlFAFv+1r7/n9uP8Av63+NH9rX3/P7cf9/W/xqpRQBb/ta+/5/bj/AL+t/jR/a19/z+3H/f1v8aqUUAW/7Wvv+f24/wC/rf40f2tff8/tx/39b/GqlFAFv+1r7/n9uP8Av63+NH9rX3/P7cf9/W/xqpRQBb/ta+/5/bj/AL+t/jR/a19/z+3H/f1v8aqUUAW/7Wvv+f24/wC/rf40f2tff8/tx/39b/GqlFAFv+1r7/n9uP8Av63+NH9rX3/P7cf9/W/xqpRQBb/ta+/5/bj/AL+t/jR/a19/z+3H/f1v8aqUUAW/7Wvv+f24/wC/rf40f2tff8/tx/39b/GqlFAFv+1r7/n9uP8Av63+NH9rX3/P7cf9/W/xqpRQBb/ta+/5/bj/AL+t/jR/a19/z+3H/f1v8aqUUAW/7Wvv+f24/wC/rf40f2tff8/tx/39b/GqlFAHo/in/kZ9X/6/Jv8A0M1P4L/s7/hJbT+1biOzsSHDXMnm4gbY2yTEQLkq21gB1IAJAJNQeKf+Rn1f/r8m/wDQzXYeDNdXTPCCQ6d4vt/Ceqm/kkujIt0rXMPlxiJS0MThlDed8jHHzdDWyMd9DJ8a3N3qVvb3F/48i8WzRNsjhMt9JJEp5JBniUAcDODnpx6cdc/8eNz/ALg/9DWux+IOm6EmsahqGh67pl7Z3F0zQ2FnBcxvCjEkcSQogUdMBj1Fcdc/8eNz/uD/ANDWoWxb3MyxgkuLyGOKNpZCwwiKST36Cp9cgkt9YvFljaNjKzAOpBIJODVGijsAUUUUAFFFFABRRRQAan/yCbP/AK7zf+gx0/whFaz+JLCK7hlmieZRiKURkHcOSSrZA5yMc+opmp/8gmz/AOu83/oMdQaNrE+hXZu7VYxdBSIpnXcYW/vp2DDnBOcZyMEAiW2tUVa6szd8V32nXOjad9ms7uCa4kmvN012so+Z9jZAiXOTGMc8e9cnXX2nxN1C0uI5BYaWyRHzIoRa7FilP3pU2EFXbnJBwPlwBsTbZm+K941uI4NE0WydHeWGW2t3VoJGzmSPLkK3zdcfwp/cXGS5ktF+P/AKbuzmp/EeoXFsYpLmVnbcJJzIxklRlQbHbPKgRrgf/WrMrqv+Fjamv+qt9Pt9nzw+TaKv2eU/emj/ALrtzk9B8uANibdGL4tXUCwhNA0NDDI00ZS3kQxyNnLrtkG1jnqMfdTH3Fw7y7fj/wAACjaaRqmo+GtLn0aKa5FvcO1wlsNxhlyCkjgdBtxhjwNp5qR9PvfEPhx49Pjk1LUE1KaW8jskLmQMq7JNqj7oIkAOMDd2zUUnxJ1IyM0Fpp1moJkgS3tVUWsp+9LF1KueeSTj5cAbE2t/4WNqa/6q30+32fPD5Noq/Z5T96aP+67c5PQfLgDYm1Xm+n4+n+QLT+vX/M2dVsZ9dtNUi06OS71pVsvtsFupaVwIiJflHLYk2bsfxYJ6Zqj4rtNct9f0N1jvl1R7KAROm8zM4XBCkclh0OOR0qp/wsbU1/1Vvp9vs+eHybRV+zyn700f9125yeg+XAGxNp/wsbU1/wBVb6fb7Pnh8m0Vfs8p+9NH/dducnoPlwBsTa+ad07db7+QeXlY3raz1S0+NMyxW93FNJfSSFVjYF4SxySMcoR+BFZN3aa0PDdpd31ldyGPVZGZrqJgu4hAQSRxllIPuCO1V/8AhY2pr/qrfT7fZ88Pk2ir9nlP3po/7rtzk9B8uANibXR/ErVIJFeG206AxkSQBLJMQTfxTIMYDtznqPu4A2JtUXNWVv6uJ2f9eVjV8XWeraBp+sr5GpxW2p3YluGlt5EijwW+Qv8AdfLNwRwQqnqcL59Xef8AC39RjtzFb6Ro9o28yCWC3cMjltzMvzkKxIHIAPC4xsTag+Ld0ixiLw/ocBikaaIxW8imKRs5dMSfK3PUf3U/uLgXMun4j3OXi8R6hDaiFbmXcmwRT+Y3mQoocbEOflUiRsj/AOvWZXVf8LG1Nf8AVW+n2+z54fJtFX7PKfvTR/3XbnJ6D5cAbE237b4sXdtDbouhaJut3Mscgt5EZZCDukXbIArHPVQMbUxjYuC8+34/8ADhqKu6zqf9s6pcXv2S2sjM24wWiFIlOOdqknGeuM9+MVSrQQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB6P4p/5GfV/+vyb/wBDNU7B7WO6Vr2Ga4t8NujgmETk4OMMVYDBwTxyARxnIueKf+Rn1f8A6/Jv/QzV/QviF4h8MaLPpekatd6ZbzXC3LPZ3EkL7gpUjKMMggjIOfujGOc69DETw74Um8S6VfyW1uwltN8sl3JcKsSIlvPOU8vYWLssD4YHAIwRyCOauf8Ajxuf9wf+hrXoWjfGDXPs99Za9qmoa1ZXFvcqhu7h55IpXs7iBNu98KpNwC3fCjHTB89uf+PG5/3B/wChrSe7K7GLRUttdy2chkhdopcYEiHDL9D29PxNXNbnknktfPkMt0kAErscsTkkAn1ClR+FIZnUUUUAFFFFABRRRQAan/yCbP8A67zf+gx1k1ran/yCbP8A67zf+gx1k1LLCu50z4JeNtX01L610C5e2ddyscKSPoTx+NYHgl7WLxloT3xRbJb+AzmQ4UJ5i7s+2M1+o3hbVdOi+Hvi1JLRHuUFmLWYW5byR5h3YcDCZHHJGenNeFmONrYaUYUktU3d+Svb5n12S5RRzClOrWbdnGNo2T952u7p6L9GflPfWNxpl5La3cL29zE214pBhlNV69l/aumspvikDaeWJRZRfaAmOJCznn32lT+IrxqvTw1V16MaklZtHg5hhlg8VUw8XdRdrhRRRXSeeFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB6P4p/wCRn1f/AK/Jv/QzX0Jqf7IcB8NzXWlazcXOp+R5sFvNGipI+M7C2eM9M/nXz34p/wCRn1f/AK/Jv/QzX3Pp3xe8Ex6fao3inSlZYlBBulyDge9aGSPj7xL8EPGvhDRLnV9X0X7Jp9vt82b7VA+3cwUcK5J5YDgd64K5/wCPG5/3B/6GtfYvx8+JPhbX/hLrthpviDT769l8jy4ILhWdsTxscAegBP4V8c3X/Hjdf7g/9DWjoPqZ+n3EFrcCSeB51A+VUcLhux5U5x6YpLya3lYfZ4ZIupZpZfMZifcAD9O55qpmjNTcqw+imZozRcdh9FMzRmi4WH0UzNGaLhYfqf8AyCbP/rvN/wCgx1k1vTqG0i13AH9/L1/3Y6peUn9xfyqRmdX1f8PdY8Zv4C0yOx8ZvHp89rEskEcETIQg+VH4+YoePmycg96+YfKT+4v5U9WKIyKSqN1UcA1nOnCp8cU/U6aOJr4Zt0JuN+za/IPFFzLeeJNVmnvBqEz3UrNdrjEx3H5xjjB6jHHpWXWj5Sf3F/Kjyk/uL+VWkkrI55Scm5Sd2zOorR8pP7i/lR5Sf3F/KmIzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoAzqK0fKT+4v5UeUn9xfyoA7bxT/AMjPq/8A1+Tf+hmsutTxT/yM+r/9fk3/AKGay61MQqO6/wCPC6/3B/6GtSVHdf8AHhdf7g/9DWk9iluZFtHFJJ+/laKIDJZF3N+AJGfzqXULSO1ki8qVpY5IxIpdNjDJIwRk+nr6U2xt7i4uFFrA9xKvzbEj8zp6rg5H1q5r0ryyWxuIRBeiLE6CMJyCduVHQ7cfpWfQvqZdFFFAwooooAKKKKALkv8AyCLb/rvL/wCgx1Tq5L/yCLb/AK7y/wDoMdbvwuMH/CwNFFwYlBmxG07FYxKVIiLEEEAPs5BGPWqiuaSRMnypsx9a8N6v4bkhj1bS73S3mTzIlvbd4S6/3lDAZHuKZ/YWpfYZL3+z7r7FEqO9x5DeWiuSEJbGAGKsAe5Bx0rsfH0PiCx0WG01TwzF4QsxdtNHZNHcLJcTFcPKv2h3cgBVDFSFOVzk4xqfGG78X2+meGYdZbV4LS40mFZBeLIizyhiW3lsb2GI/vZIAX0FDSUebzS/Bv8AT+tgT1S8n+DR51a6FqV7bPcW+n3VxBHG8zyxQMyrGmA7kgYCruXJ6DIz1qW28L6ze6PPq1vpF9PpUBKzX0Vs7QRnjIZwNo6jqe4r0DxVd+L7L4ReEXmbV4NKkW4iaZ1kWN42IEUZc9UKFtq5xgtgcmtW00fUn8aeDvEmmWlzN4Tt7OxWe9WNntLSJY1W7jlYZVBnziykjO8nHzc3ya29F+er8v6uRz6X9X62toeQ2Gl3uqyeXZWc95JuVNsETOdzMFUYA6liAPUkCobi3ltLiWCeJ4Z4mKSRSKVZGBwQQeQQe1eo+BZPEi/D/wAdyeHo9VOmK8TRtaxyMkfz/OwxkK4jxuYHIXqcV5dcXEt3cSzzyvNPKxeSWRizOxOSSTyST3rN7I06tEdFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAdp4p/5GfV/+vyb/ANDNZdanin/kZ9X/AOvyb/0M1l1qYhTLrmxuf9wf+hrT6Zc/8eNz/uD/ANDWhjRh7aNtOoqLF3G7aNtOoosFxu2jbTqKLBcbto206iiwXJrqUQ6Ra7gTmeXp/ux1VtdW+xy+ZGv7wDCsRkqfUe9San/yCbP/AK7zf+gx1k1LSejNIycWpR3N3/hKJR92OJMcptiA2N3ZfQn/AAxjAwf8JRKPuxxJjlNsQGxu7L6E/wCGMYGMKis/Zw7HR9ar/wA7/r+vy7I3f+EolH3Y4kxym2IDY3dl9Cf8MYwMH/CUSj7scSY5TbEBsbuy+hP+GMYGMKij2cOwfWq/87/r+vy7I3f+EolH3Y4kxym2IDY3dl9Cf8MYwMUrjUkuJmkMYQt1Ea4GfXHbPWs+iqUYx1SM51qlRWnK6Ln2xPRqPtiejVToqjEufbE9Go+2J6NVOigC59sT0aj7Yno1U6KALn2xPRqPtiejVTooAufbE9Go+2J6NVOigC59sT0aj7Yno1U6KALn2xPRqPtiejVTooAufbE9Go+2J6NVOigC59sT0aj7Yno1U6KALn2xPRqPtiejVTooAufbE9Go+2J6NVOigC59sT0aj7Yno1U6KALn2xPRqPtiejVTooAufbE9Go+2J6NVOigC59sT0aj7Yno1U6KALn2xPRqPtiejVTooAufbE9Go+2J6NVOigC59sT0aj7Yno1U6KALn2xPRqPtiejVTooAufbE9Go+2J6NVOigC59sT0aj7Yno1U6KALn2xPRqPtiejVTooAufbE9Go+2J6NVOigC59sT0aj7Yno1U6KALn2xPRqPtiejVTooAufbE9Go+2J6NVOigC59sT0aj7Yno1U6KALn2xPRqPtiejVTooAufbE9Go+2J6NVOigC59sT0aj7Yno1U6KALn2xPRqPtiejVTooAufbE9Go+2J6NVOigC59sT0aj7Yno1U6KALn2xPRqPtiejVTooAufbE9Go+2J6NVOigC59sT0aj7Yno1U6KALn2xPRqPtiejVTooAufbE9Go+2J6NVOigC59sT0aj7Yno1U6KALn2xPRqPtiejVTooAufbE9Go+2J6NVOigC59sT0aj7Yno1U6KALn2xPRqPtiejVTooAufbE9Go+2J6NVOigD0fxT/wAjPq//AF+Tf+hmsutTxT/yM+r/APX5N/6Gay61MQplz/x43P8AuD/0NafTLn/jxuf9wf8Aoa0MaMWiiipKCiiigAooooAKKKKADU/+QTZ/9d5v/QY6ya1tT/5BNn/13m/9BjrJqWWFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA9G8UHPibVz63k3/oZrMrS8SnPiPVT/ANPcv/oZrNrYyCmXP/Hjc/7g/wDQ1p9Muf8Ajxuf9wf+hrSYIxaKKKkoKKKKACiiigAooooANT/5BNn/ANd5v/QY6ya1tT/5BNn/ANd5v/QY6yallhRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPRvE67PEmrL6Xco/8fNZlanir/kaNY/6/Jv/AEM1l1qZBTLn/jxuf9wf+hrT6Zc/8eNz/uD/ANDWhgjFoooqSgooooAKKKKACiiigA1P/kE2f/Xeb/0GOsmtbU/+QTZ/9d5v/QY6yallhRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPR/FX/I0ax/1+Tf8AoZrLrU8Vf8jRrH/X5N/6Gay61Mgptxj7Fc55GwdP95adTLn/AI8bn/cH/oa0MEY+U/ut/wB9f/Woyn91v++v/rU2ipKHZT+63/fX/wBajKf3W/76/wDrU2igB2U/ut/31/8AWoyn91v++v8A61NooAdlP7rf99f/AFqMp/db/vr/AOtTaKAHTlLi3ihZWCxuzghucsFB7f7Iqv8AY4PST/vof4VNRSGQ/Y4PST/vof4UfY4PST/vof4VNRQBD9jg9JP++h/hR9jg9JP++h/hU1FAEP2OD0k/76H+FH2OD0k/76H+FTUUAQ/Y4PST/vof4UfY4PST/vof4VNRQBD9jg9JP++h/hR9jg9JP++h/hU1FAEP2OD0k/76H+FH2OD0k/76H+FTUUAQ/Y4PST/vof4UfY4PST/vof4VNRQBD9jg9JP++h/hR9jg9JP++h/hU1FAEP2OD0k/76H+FH2OD0k/76H+FTUUAQ/Y4PST/vof4UfY4PST/vof4VNRQBD9jg9JP++h/hR9jg9JP++h/hU1FAEP2OD0k/76H+FH2OD0k/76H+FTUUAQ/Y4PST/vof4UfY4PST/vof4VNRQBD9jg9JP++h/hR9jg9JP++h/hU1FAEP2OD0k/76H+FH2OD0k/76H+FTUUAQ/Y4PST/vof4UfY4PST/vof4VNRQBD9jg9JP++h/hR9jg9JP++h/hU1FAEP2OD0k/76H+FH2OD0k/76H+FTUUAQ/Y4PST/vof4UfY4PST/vof4VNRQBD9jg9JP++h/hR9jg9JP++h/hU1FAEP2OD0k/76H+FH2OD0k/76H+FTUUAQ/Y4PST/vof4UfY4PST/vof4VNRQBD9jg9JP++h/hR9jg9JP++h/hU1FAEP2OD0k/76H+FH2OD0k/76H+FTUUAQ/Y4PST/vof4UfY4PST/vof4VNRQBD9jg9JP++h/hR9jg9JP++h/hU1FAEP2OD0k/76H+FH2OD0k/76H+FTUUAQ/Y4PST/vof4UfY4PST/vof4VNRQBD9jg9JP++h/hR9jg9JP++h/hU1FAEP2OD0k/76H+FH2OD0k/76H+FTUUAQ/Y4PST/vof4UfY4PST/vof4VNRQBD9jg9JP++h/hR9jg9JP++h/hU1FAEP2OD0k/76H+FH2OD0k/76H+FTUUAQ/Y4PST/vof4UfY4PST/vof4VNRQBD9jg9JP++h/hR9jg9JP++h/hU1FAEP2OD0k/76H+FH2OD0k/76H+FTUUAQ/Y4PST/vof4UfY4PST/vof4VNRQBD9jg9JP++h/hR9jg9JP++h/hU1FAEP2OD0k/76H+FH2OD0k/76H+FTUUAQ/Y4PST/vof4UfY4PST/vof4VNRQBD9jg9JP++h/hR9jg9JP++h/hU1FAEP2OD0k/76H+FH2OD0k/76H+FTUUAQ/Y4PST/vof4UfY4PST/vof4VNRQBD9jg9JP++h/hR9jg9JP++h/hU1FAEP2OD0k/76H+FH2OD0k/76H+FTUUAQ/Y4PST/vof4UfY4PST/vof4VNRQBD9jg9JP++h/hR9jg9JP++h/hU1FAHY+Kv+Ro1j/r8m/wDQzWXWp4q/5GjWP+vyb/0M1l1ZAUy5/wCPG5/3B/6GtPplz/x43P8AuD/0NaGCMWikzRmpLFopM0ZoAWikzRmgBaKTNGaAFopM0ZoAWikzRmgBaKTNGaAFopM0ZoAWikzRmgBaKTNGaAFopM0ZoAWikzRmgBaKTNGaAFopM0ZoAWikzRmgBaKTNGaAFopM0ZoAWikzRmgBaKTNGaAFopM0ZoAWikzRmgBaKTNGaAFopM0ZoAWikzRmgBaKTNGaAFopM0ZoAWikzRmgBaKTNGaAFopM0ZoAWikzRmgBaKTNGaAFopM0ZoAWikzRmgBaKTNGaAFopM0ZoAWikzRmgBaKTNGaAFopM0ZoAWikzRmgBaKTNGaAFopM0ZoAWikzRmgBaKTNGaAFopM0ZoAWikzRmgBaKTNGaAFopM0ZoAWikzRmgBaKTNGaAFopM0ZoAWikzRmgBaKTNGaAOy8Vf8jRrH/X5N/6Gay61PFX/I0ax/1+Tf8AoZrLqiAqSL/Vzf7n/swqOpIv9XN/uf8AswoAjoq5o9mmoavY2shZY550iYr1AZgDj35rv9c8FeG3uPGVlpcGrWM/h3zHN5e3kdxDOEmEWwqsMZjZi2VO5uRjHcD0V/X8N/zBau3p+Ox5pRW1B4N1i51jTtKis91/qEUc1tF5qDzEddyHOcDI9SKvaN8M/EWvWVnd2llF9mvZGhtpbi8ggE0gbaY08x13Pnoo5PYUAcvUV1/qG/D+da974c1LTdOS+urR7e2a5kswZCAwmjCl0K53AjcvUd/rWRdf6hvw/nQBn0UUVJQ6KJ5pFjRSzscBR1Jq/L4d1GGBpmtz5ajcWDqePXg1ueG9At5bK3v3kkWYMWBBAC4OO49q6ZdNmltWtIo5WLqUXMW0AEY7AACuv2VOnDnry5dL7o82eJm6nJRjezs9GeWUV13xC8J2fheWyNm8rJOHyspBxtx3wP736VJqXwyvbDwPoniNLu0uRqckkYs4rqFpVwUC7VEhd2O/lQuUx82M15eGxEMXSjWp7P8AzsetODpycJbnG0V02qfDbxFpCQmawWZpbhbPy7K5iupEnb7sMiRMzRyHBwjgEkEY4Na3hv4PatrPjLTdAu7mwsftjMpuo7+2uEQrjcuUlwZBlcx7t2DnGK6TM4OirWqabLpGoTWc7wSSxHDNbXEc8Z4zw8bMrfgTRp1kNQnMPnLFIVPl7+A7f3c9s8/jj1pLXYb00ZVoq/PpElnZNNdH7PIW2xwOvzvzycdgPWqFMRasf4/wq3VSx/j/AAq3VIlhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGp4q/5GjWP+vyb/0M1l1qeKv+Ro1j/r8m/wDQzWXQAVJF/q5v9z/2YVHT0YJFMWIUbByf94UAW9CuY7PW9PuJm2QxXEcjtgnChgSeK9I174jQeONb8T6Tr2t3FzoF1dT3Wk3115sv2KUMxiIXBdYmU7GUDjKnGVryX7RF/wA9U/76FH2iL/nqn/fQoeqs/P8AG35W0Baary/C/wDmezeGfEPhYeKfB3iS+8QJZLpllDa3VgbWd5xJErIGUqmwoRtYnduGSNpIrj77xFZy6D4Mto7k+dps9xJcKFYeVumDKc45yBnjPSuJ+0Rf89U/76FH2iL/AJ6p/wB9Cmnyz513v+NxNXjy+Vv0Ou8fz6Tq2uavrFhqf2mW91W6cWv2d02wFt0cu49d24jbgEbeetchdf6hvw/nS/aIv+eqf99CormeNoWAkUnjgMPWoilFWRbbk7sp0U3ev94fnRvX+8PzoGdR4R8Qy219p1i/lrb/AGhMyNwVG8HrXrWuX82mWj3MbxiNEYkPHkAhWblt4wDgL0PJHrXz7vX+8Pzo3r/eH514eY5Z/aNWFSU7cqta19PvOnD1lh4yjGO7ub3ijxbdeKpLdriOKJYAQqxA98ZJyfYV2PhrxlpGmeHvBN1Ncobzw3rEt3NprRv5lzE7wsGiYKUyNjZDsvQYzmvMN6/3h+dG9f7w/OvXoU4YeChSVktvvuc826jblrf/ACseua943a0u1XTPGekfY59SiuFfSvDqWs8KoxZJZyLePLKSPlRnBy3P96e38X+FtH8beENakn06fU4L0yarf6Dazw2rxEKquYpETEgO9mEaKpBGBnNeOb1/vD86N6/3h+daJJW/r+thO8r36/1+pd1a1hstRnht72DUYUb5bq2WRY5B1yBIqt7cqOlN06W2gnMlzG0yoMrEOjN2DH0+lVN6/wB4fnRvX+8PzoWgPV3NfUdZXWbcvdoftyHCSxgBWXP3WHbHYj6H1rKpu9f7w/Ojev8AeH50xWLlj/H+FW6pWUyJv3Oo6dTVn7RF/wA9U/76FNCZJRUf2iL/AJ6p/wB9Cj7RF/z1T/voUxElFR/aIv8Anqn/AH0KPtEX/PVP++hQBJRUf2iL/nqn/fQo+0Rf89U/76FAElFR/aIv+eqf99Cj7RF/z1T/AL6FAElFR/aIv+eqf99Cj7RF/wA9U/76FAElFR/aIv8Anqn/AH0KPtEX/PVP++hQBJRUf2iL/nqn/fQo+0Rf89U/76FAElFR/aIv+eqf99Cj7RF/z1T/AL6FAElFR/aIv+eqf99Cj7RF/wA9U/76FAElFR/aIv8Anqn/AH0KPtEX/PVP++hQBJRUf2iL/nqn/fQo+0Rf89U/76FAElFR/aIv+eqf99Cj7RF/z1T/AL6FAElFR/aIv+eqf99Cj7RF/wA9U/76FAElFR/aIv8Anqn/AH0KPtEX/PVP++hQBJRUf2iL/nqn/fQo+0Rf89U/76FAElFR/aIv+eqf99Cj7RF/z1T/AL6FAElFR/aIv+eqf99Cj7RF/wA9U/76FAElFR/aIv8Anqn/AH0KPtEX/PVP++hQBJRUf2iL/nqn/fQo+0Rf89U/76FAElFR/aIv+eqf99Cj7RF/z1T/AL6FAElFR/aIv+eqf99Cj7RF/wA9U/76FAElFR/aIv8Anqn/AH0KPtEX/PVP++hQBJRUf2iL/nqn/fQo+0Rf89U/76FAElFR/aIv+eqf99Cj7RF/z1T/AL6FAElFR/aIv+eqf99Cj7RF/wA9U/76FAElFR/aIv8Anqn/AH0KPtEX/PVP++hQBJRUf2iL/nqn/fQo+0Rf89U/76FAElFR/aIv+eqf99Cj7RF/z1T/AL6FAElFR/aIv+eqf99Cj7RF/wA9U/76FAElFR/aIv8Anqn/AH0KPtEX/PVP++hQBJRUf2iL/nqn/fQo+0Rf89U/76FAElFR/aIv+eqf99Cj7RF/z1T/AL6FAElFR/aIv+eqf99Cj7RF/wA9U/76FAElFR/aIv8Anqn/AH0KPtEX/PVP++hQBJRUf2iL/nqn/fQo+0Rf89U/76FAElFR/aIv+eqf99Cj7RF/z1T/AL6FAElFR/aIv+eqf99Cj7RF/wA9U/76FAElFR/aIv8Anqn/AH0KPtEX/PVP++hQBJRUf2iL/nqn/fQo+0Rf89U/76FAElFR/aIv+eqf99Cj7RF/z1T/AL6FAElFR/aIv+eqf99Cj7RF/wA9U/76FAElFR/aIv8Anqn/AH0KPtEX/PVP++hQBseKv+Ro1j/r8m/9DNZdanir/kaNY/6/Jv8A0M1l0AFSRf6ub/c/9mFR1JF/q5v9z/2YUAR0UVs6f4R1LVdFk1Ozh+0xRSmJ44+XGADnHcfN2qZTjBXk7Gc6kaavN2MailIKkgjBHY0lUaEkv+rh/wBz/wBmNR1JL/q4f9z/ANmNR0AFFev+C/2bdd8XeBbvXvM+xXTKH0+xlXBul65JJ+UHouevXgYNeS3dpPYXUttcxPBcQuUkikUqyMDggg9DQBWuP+PeX/dP8q5CuvuP+PeX/dP8q5CokXEKKK6vwXr2kaPaXsepWNvdvNc2bo01sspSOOXdKAT0DKMEDqOOlJK7SHJ2TZylFeiwva6XoGs+NLayspJ7vWGstOtrm0ilgt0KmWRvIcFCQrRooKkKCx6hSMPX/E48aWujwTWWlafqMMskUlzZWUFjHKjlNhkESKuVO8bsdMe5Mq7sra6fir/qU7K76a/hoctRW5qFkfBPi9oDcaZrn9nXKt51q63Nnc7SDwSMOh6HI9QRW5qttF4U+Kg/s6G3ksZLiO4tIry1jniNvOqvGDHIrK3ySAcjgjI5ANXBc7il1Ik+RNvocPRXteqBfEmvfEGz1PRtLtvDmi/bfJvrDS7eyNnOjMLZPNijQuXYBNjltwJOMrkcQnwp1NfCsPiG51DR7LTri3lntzNfoWmaMAmFQu796QfuHBGMNtLKGzUrrm6Wv/XnoaNWdvO39fecXRXYaX8NLzVILaNdT02HWLuITWmiyvL9quUK7lKlYzGpYZKq7qxGMD5l3M8NfDm88SWtrINR0/TZb+ZrfTre+eRXvpVwCiFUZV5ZV3Ssi5brw2LtrYi+lzkqK6zQPhlrfiXVdX06zNgbvS43kuEa/hwQud2whiHAwcsuVUcsQOaWL4eSS63qtmNc0hrDTIUnudZiklls1RtgUgpG0jZaRVwEyDnOACaW/wCfyH/w3zOSortLD4V397qWsWz6ppFlbaXHDPPf3d0Y4milK+XIi7fMYEOrYCZGQCAxCmv4z+G+o+BoQ19d2M8q3UlncQWkxke2lQBtrnaF5VgRtLdwcMCAPTV/1/VwWrsjk6K3fA10bTxjoziG2uA11HG0V3bR3ETKzBWBSRWU8E9RweRyAa9J+INr4x0V/Er6n4NstM8ORzTW8M8vhe1sshmZIvKmFurFhwwKtyF680S0Sfe/4W/O4LVtdrfjf/I8ZorotW0HUtP8HaLqFwdPOm3c862xtmgefcqxlxKyZccMmEkORkkKN2TpWLxXXwi1kPZ2gmtNWshFdC3Tz8SR3RcGXG4qfLT5c7flzjJJI9E32/zS/UFrZnF0V03hnwLL4jhhkfVdN0j7TN9ns01B5AbuXj5U2IwUZZRvk2Jk/e4OG6N4Hn1CXURqF/aeHodPnW1uLjU1mKJOxcLERFHIwY+XJ1AA2HJHGXbW39f1t967h0uc3RVjULJ9Nv7m0kZHkt5WiZozlSVJBIPccVpeDPDE3jLxTpuiwSCBruUI0zDIiQcu5HcKoY/hSj71rA9NzForo4rDTfFfi1bKxmsvDWnyuIYJr95mjAHCtIyrIwZuCSAFBJ4VemhrPgODwXqdimt6vZXC/b3t7qxs1nFwkUczRySfPEq4OxtvO7kcDnDWtulxPS/kcZRXr/xL0O90jw/M2rWWimzvp1/4Ru70WztovtMQPzvviUOyhCikTEtuYd1fE3i34fax4HsNS0jSNO0O7Wxs9+r3U01jd37NtHmMkLs0sEaFsBkRWI+diQV2zfS/9fPtbr2Ktql/Xy7+R41RXV+HtCtfE/hbWo4LYRaxpEJ1FZkZibm3DKsqMpJUFAwcFQOA4O75cLpNtb6v8PdciFvENQ0qeK/SdYx5jQORDIrMBkgO0JAJwMtjqab0/r+vP7mJa/1/Xl95ydFeleH/ABLc6T8KJ5rbTtFnu4NXhtYprvQ7O6l8t4pnZS0kTM2WVcZJIxgYHFX/ABh8NIb8T3kdxpvh7WLHRY9T1nRZlmWRJWcqRHGkbCMkGFjGSoQy9FUfKS91vy/yv+W4R963n/nb8zyaiuotfBCSat4bsrjXLCD+2VjkLhJ2NorthRIPL5J7BNw6HIBzXSeG9AsvDXxustDtptP8S2bX/wBiIktWmQqzlChSaNcyAcZC4BOVPQ0dl3v+Ar9fT8TzOiut1f4a6npdlptxFc2Opve3ZsDbWExklguQFPkuCAC3zjlCy9RnIov/AIdz22nz3VnrGk6w1o6JfQ2M0mbMs2wF3kRY2Xf8u+NnUHHOCCT+v6+9feh/1/X9dDkqK7zXvg5q/huy1OW71DSWu9Pt4rySwt7rzZmt5NgEqlVKFQZFH3sn7wBXDHY8CwajrHhnVnj8L2d34XsNNnN1P/ZsT3Tz+X99J9hlykjxsQjBUQDcACdx0b7f1/wPXQFq0u/9f15HldFd/wCAvElxPqGg+HbCx0aGOacJdXl/o9peSHc+XkLTROVVE7A4+UnqTXJeJdTh1rxDqV/b20Nlb3NzJLFbW8axxxIWJVVVQAABgcCh7gjNorpPA9zfR6mYNI0q21TWLjCQC7s47qONQC0jeXKGToOWYEKoY8dR0PjqaPwd8Q9S+06HbWmrWtvChtJLJPsgu/LQSyiFgEMZO9lXaUOVIG3ih6WDe551RXofjTUYEg8DeIW0zTbfVZ7Y3F3aW9nFFbXAjuHWN2gUBBvCEEBQCFzjk1jeMfDUcPj6607TDFFaXcqT2RuJUgjWGZVki3O5CqAjqMkgcU0m3Zd2vu/zDTc5Wiu91/4P6j4fi1kSaxo93eaNKF1CxtJ3eaCMvsExBQKyZK5Ckuu9dyrziHU/hdJpeuf2dJ4i0eRP7MGq/boxdeR5RUOq5MAbcykY+XGSASGyBN1a/wDW1x26f12/VfecRRXYWngixn+G9x4lk8QWdvdpeC1TTpI597fIzYysRXc3BGWCgA5OTgdDpvguXx74J8JiJ9G0V/tt1p6310gg+0SHyDFGzIhaRyWf5mBCg8soxVW1a66fj/w6JurX6f5f0zy6iuk0vwRLdJczalqmn+HrSCdrU3OomVleZeWjRYY5HYgEEsF2jIyQWUHUtPhBrtzNrayS6dZx6OI5LuW4vEAETldsqgZZoyrhtwGCCAMsVUq/UZw9FbHivwzP4R1ltPnuLa8/dRTxXVmzNDNHIgdHUsAcFWHUAjkEcVQ03TrjV7+3srSPzbmdxHGpYKCT6k4AHqScDqaFqGxWorq9R8A/YLeyvE1/Sr3Sbi5+xy6nbC4MNrLgNtkBhEn3TkFEYHBwTg4seL/hpJ4MtrqS71/SbiSKVI4YLb7QWulaKOXzIi0KqUCyryxHtnjIBxlFdZ/wrm8OkXF0mo6fLqFtbC9n0dGkN3FBwfMPyeXwGViocuASSow2Lum+KdCtfDEFnNplrLfJp17A0zWaM5mlkUxtuPJKqDhv4c8daHpfy/r/AIHqC1t5v+v8/Q4aiivXvA8fiLUPhZI3hzwvaa7f2uqiFpI/DVtqE6wtGznezQOxG7oW6cAHHFPo32/zt+ouqXf/ACv+h5DRXZ65o+oa94+t9H1RNJ8N6oxjtrqSaOOwtIHxndIqIqx4BAbC9QfWuTvLU2d5Pb+ZHMYpGj8yFt6Pg4yp7g9jSWoyCivX9GtbPS/jX4W8OrpenXUVp9l0u8iuLOOUTTPg3BcMCGcO7oGOSAowRgVx2ufDe/0vSl1KC80/VYPtYsblNOmMjWdwRlY5MqAc4bDoWQlWAbIo9P61/XT77Cv3/r/htTkaK6nxX8P7nwpaySvqVhqD21z9ivYbTzt9ncYY+W/mRoGPyOMxl1+Q88jMq/De8bSp7g6jpy6lBaG/fRi8n2sW4AYyH5PLGFO7YXD4520r6N/13/LX012H5f1/XT1ORor0zWvDUfi+30bUGn0fwxbRaHHNdXL2skVuW+0zRICIInJkIUckZYISScE1z1l4B+3LoUia/pa2+rXM1mk7Lc7YJY9nyyAQ7vm8yPBUMPm5xg4qz5nFd2vudhXVr/1tc5Siu2s/hTfz2WrX1zq2j6dYaXffYLq4ubsko/z/ADeUitLtJTA+TJzwCFcrm6n4D1LS/GcHhpzDc3lxNDHbzWj+ZDcLLtMUkbcZVgykdDzyAcilH3mkuv6jfu3b6HN0V6BeeEz8Q/iHrdj4a/sy0s7RZfs/mzxWySQwIQGGcb3ZY9xIB5YsxADMGW/wiubzU9At7fxFodxZ61M9rbanHLObdblSAYJP3W9H+ZMEptIdSGxyBe9ZrqD929+n9f15anBUV0N14Oe107ULsanZzG1v/wCz0t0ScS3L8/NGGiA28chirDI+XJFW9W+HV1pWkXt4NT028uNPZF1DT7WR2ns9zbRvJQRt82FPlu+CQDjmle/9f13HbWxydFdhP8NLyG0u9up6bPq9nC1zdaJE8puoI1GXLHy/KJUcsqyFl5yAVYDpfhN4PEOtQy6hNocr3dhcSf2PqSCS4MBhZkmQOhRWyFKjeJMfMF2nJb0v/X9f8B9hLX+v6/prueVUV03hnwLL4jhhkfVdN0j7TN9ns01B5AbuXj5U2IwUZZRvk2Jk/e4OF8GeGft/j6x0jVImgiguWN+jjBiiiy8+fTCo+fpT62YujaOYorsvCGhWvxM+Iotbq7tfD9tfzyTEJCwjQct5caxoQvHA4AAH0Bxrbw2b/X302y1Czu4U3M2oqZI7cRqNzSHzEVwoGeq7jjABJAMrValPRmNRXUaj8P7611DRbexurXW4NZfyrC8sDIIp5N+wpiREdWDEAhlHUEZBBNPxJ4Zi0BLWS31rT9bgnLr5unidRG643KyzRxsD8wPQg560xGHRXYeOfBFj4SsNCntfEFnq02oWaXUkEEc6sm4tgjfEq7cAD7xbIJwBiuPo6tdtA6J9wor0Gw+C2qXsWj7tZ0G2utZtzNptq99ve6bc6iJWjVkVyUwN7Ku5gudwZVym+Hk6+HNJ1catp7jUL86d9jVbgz28oxu8weVtGAyn5WYndwDhsOzvb+t7fmK/X+u/9fM5Oir+u6WNE1i808XlvqH2aQxG5tN/lSEcErvVWxn1AqhUppq6Kas7MKKKKYgooooAKKKKACiiigAooooA9H8Vf8jRrH/X5N/6Gay60/E7bvEurEd7uY/+PmsytTIKki/1c3+5/wCzCo6ki/1c3+5/7MKAI69m+DP/ACK91/1+N/6AleM1s6f4u1LStFk0yzm+zRSymV5I+HOQBjPYfL2rjxdGVenyR7nm4/DSxVH2UO6O8+KH/CM4k3/8hnt9lxnP/TTt/WvKqUksSSck9zSVpQo+wgoXubYXD/VaSp8zfr+nkSS/6uH/AHP/AGY0+xu2sL23uUSOR4ZFkCTIHRiDnDKeCPUGmS/6uH/c/wDZjUddB2H0L4e+Imu+Lvhn8TfEF5eNFfxtZG3NuSi2wWQlVjGflA/PucmvGfG3jW/8fa0NV1NLdbwwpC728Qj8zaMb2x1Y9z9AMAAUmkeNdT0Tw3rGhWrxiw1by/tKsmWOw5XB7c1g0AR3H/HvL/un+VchXX3H/HvL/un+VchUSLiFFFFSUdt4X1PStW8GX/hfVtRi0ZheJqNhqFxFLJCsm0pLHJ5au4DLtIKoeUweDkYusaJpemXFpBbeIrXVjI37+5tLedYIVyAOZUR2b7xICYAxgsSQMOin1v8A12/IOljR8Q2Nhpmt3lrpmprrOnxSFYL9YHhE69m2P8y/Q11S6lpfiBfBL3Wr2+nXlijWl7LdRTMqRxSGSFyY42Jyr+WAoJHljOBzXCUURbjZ9tfmKSUk130O7+Mfiq58UeM76X/hLJvFWlm4mnsXeW5KW0buSIwk6qUIAXIUbeBgnFM8SvpUvw48LwW2vWV3qNm07XFhHFcCVPNZWHzNEIzt24OHPJGM9a4eiojHljyotvmd2esr4g8P6l4k8M+MpNet7G50qCx+1aQ8Nx9pmktVRMQssbRYdY1wWdcEnI4yb2gyWdt4T0fUtY1TS9M1CS8udR0hNTjvV+zfOqiRDBFL5iF0c7H2kNGhBKl1fxit3QfHfiXwrbSW2i+IdV0e3kfzHhsL2WBGbGMkIwBOABn2q+7/AK139CFpZen4KyOo8HWVpoHiHxdY+INestIuhZ3Wm+ZdR3EglmYlcjyonOAVySwB5HB5xQ+HJ0G2k1mXUdR0yy1OOFRpk+r2ctzZ7/MG9mjSOTJ2Z2h0ZeTkZxjiiSxJJyTySaSkuj8rfn/mN6383f8AL/I9l8Waz4f16+8UXS+MNPmk1PStPt43ltbtGaaNoPM3AQEDHkseDjDLjuBm/ErWtBvtG19NM1+11OW88RtqEUUMFwjGFom+Y+ZGoGGbbjOeOmOa8sopPVcv9bp/oPrf+trG14M+yr4r0mS9v4NMtIrlJZLq4WRkQKd3IjRmJOMDCnkjOBk1a8eXFt/wmGuvperR6np95dSTrPbLLGkis5cBlkVWyMjIIxkcE9a5uim9beV/xt/kJaX87fhf/M7fU20o/CjR7SLX7GfVYNRubuTTkiuRKqSxwIBuMQjJBhYnD9CMEnIBo7aUvws121m1+xt9Uub61uodOkiuTK6wpOrDcsRjBJmXGX7HOOM8RRQ9U13/AEt/kC0SXb/g/wCZ6r4c8YvL4A0zSrPx/ceC7iyknjurUy3ixXkLtvVlFujAsC0ikPt4289cZvw91aw0i61oweIbHS7GaSOJtO8Q2009vqNrliVkWCKTDqVjII2lSxKsCM155RTvrf8Ar+v82K2ljS8SvpsniLU20aN4tIa5kNpHISWWHcdgJPJ4x15rb+FHiC28M+P9Kvb1xFZMZLaeVs4jjmjaJnOOcAOTxzxXJUVMVZWeo3qdFY+F4LXxa2keItQi0KG3kIuLiVJJBgc/J5aOTuH3Tjacg5xXY634l8PeJNS8MeL9Vvbe71CG4hi1fQvLmeSaCGQLGVZk8s5hVVYF8kqD1Y48xnuZrkoZpXlKII13sTtUdFGegHpUVUm1byBpO/mesah4rt9M0HxPDc+LrPxbFqzrPbWMMd2HtrpXQpcfv4VRNsatGdjMSCq8ryEn8QaJB4r1rxtF4gtJ5dSgvG/sPybkXQluYXRkZjF5WxWkJyJCSqjucDyiiptpbyt+g763+Z3fw7vl8N6F4u1i4AEVxpcuk2wbH76eYoCFB67U3McdPlz94Zyvh7q9npPiLZqU32fS762nsLuQqWCJLGyhyqgk7GKPgDPyDFc89zNJDHC8rtDFkpGzEqmeuB2zgVFTer17W+Wv+bFsred/np/kj1Dwr4kHhn4WapDpXjtdC1y5vo7o2Vm17DNLFHHKhjZ44tmWLKQC+3HUqRiud+GJu4vF1jcJZzXenvKtnf7VOzyJ8xurN0XKl8E9xntXI1e0/W9R0mC8hsdQurKG8iMNzHbzNGs8Z6o4B+ZfY8U/tOT/AK0sK3u8q/q7ubF74gtZfH8Wpxh1023vIvJXGWW3iKrGPqERfxrprCbQrP41Qas/ijTm0c6g2otfJBdlUUylvLKmAPvx6Lt5+9XmdFLtfpf8bf5De7t1/S/+Z6l4X1zR/A2k6Tex6/Y6pfaX4ijv/sFvDch5oUwpZWeJVGdu4AsDg8gHiqhk0DwtB4lbTvElnqya3bmxt4I4LqN7aNp45PMn3xKvyrHjEbP8xGMgZPnFFD1d3/WiX5IFpt/Wra/FnsOs3fhu88ReJrmLxjpRgvNCt7OBzbXw3zKkKsuPs+RjyCcnAw6c/e2814LOneDL7T/E48U6ZPdWqmX+yIIbv7S5KkGEs0Ai5zhjvIwTjccA8HRQ9f69f8wWmn9dF+h03gvVrTQY9cv5bhY78afJb2MexizySkRuQQMLtiaU5J64xntnaB4lu/DU0stpDp8zSrtYahp1veKBnPCzRuFPuADWVRR1v/X9ah0sbekaZa+JLu8lv9e0vQGLeZm7gnCSFiSQi28LhQPTCgZGPbqpbjQvFfibSbTV/ENtb6Vo2mpZnUJYrjbfGMsVVAkLOiksEDMgIRd2M/JXnVFPsv66r9fQO7/r+tDq/HgtZrlLtfENhr11MdgTS4riOC0hRQqRgTxRnGOABkALySTTfEWq2mu6D4WZJt+rWkD6fcw7G3FEkLQvnGDlZNgAOR5XPUVy1WNP1C60m9gvLG5ms7uBxJFcW8hSSNh0KsOQfcU4Plab6O4PyPV/HwtPBniv4gXQ1ex1C61aS6sYbKBZDLCXuA0hlDIAm0Ky9TlipXcuWrE1nU5LD4YWlhqFlPaa6LiTTledSjGyVln2FTyCJXGD0xx2NcXrfiDVPEt99t1jUrzVbzaE+0X07zSbR0G5iTgelM1XW9R16aKbU7+61GaKJYY5LuZpWSNfuoCxOFHYdBWSVopPy/D+n97Hs9P6/rT7kdLpd1pt98NNQ0qfVrbTtQh1Bb+KG5jmP2lRCy7EMcbANnH3yo569a19IbQl0HwSs3inTre5s9VmuruB7e7LW8b+UQWKwEMf3JBCluWXtuK+bUVqpWlzrfT8LL9CHFOPK9tfx/4c9S1i98P+JtIvdBbxLYWLWWtXWoWepXFvdfZ7qGdUDABImkVwY14ZAME88DM954j0PWdH8VQnXbSzcaRYaXZLcQ3Je9NsYizrtiYKG8pgocqeVyByR5NRWaiklHtb8Fb8jRu7v6/i7/mdp4+XSbrVdDWy8QWWpW62FtaTz2sNwBA0aKjEiWJCR1I2g8Dsad4Z1LR/AnxTtri31eXU9DtbhoxqtrC8EjQupQyojfMrAMSB6jr3riaKpaO/q/vItpbyS+5WPQPFsyeILuyj1f4kHxPO0vlx39w19LBZw87i/nRCTJO3Cxqw4OT0q14x1LQvFPhWJV163j1Dw9I2nadDLHcFr7TxyjA+VtV95c4crw+MDaoPmtFK2lv6/rf72VfW/wDX9bfcj1vx94xh8WWU903j+9n0eeCOVfCrS3ZeG42AbArJ5ARZMtkPnb0GeK8koop9WxdEgr0PRrXQ9R+GK6Zc+LtJ0nUZNT+2G3vIL1iiCNo8Ford1yTgjBPB5IPFeeUUbprv+jv+gdU+3+Vv1OrvNG0J/E2k2UviyO5s5lQX+tR21xJFAdxHyRuiSOFQJ2GTwOOar+EG0nTfHFhNqN2kmk2dz57zCJyJ1jJZVC4JG8qFGRxu5wAa5yimm07r+v8Ahv8Ah7iaTTT/AK/4c6zwX4mitvifpGv6vOY4v7US7upyrPtBk3O2BknqTxk/Wtb7Tofhvw/e6J/b1rrkWsX9rLc3Glw3Ci2giMm7/XxRkufMGMAjCnPUV57RSjaKSS2/4H+Q3d3be/8Awf8AM9j8da14duPA+s6NpfiXRJLaPU4bvTdP07T7qAeQqyphneBS82HQlpGPC/fOAK53xtH4W126uPEdrr6Bru3WRtDW2mW6iuSoVl3lPKMYYbtwfO0gbQenn1FK2/8AXSw77Htd7qvhnW/Aej+E7/xhpCwWVg01teRWd7m2vfNdikmLcF45EcLn5ipjyOOH5rw1PoI0fSYL3xJaWT6LrU96wNtcObuJltwpg2x4yfJbiQx9V98ec0Vak1NzW7d/x/pehFvd5en/AALf8H1PW7rR7HxJpvj5rPX9PSxl1+1nt9QuVmigmDLdsFyY8q2G6MAPlIBPy7s6Lxjpdt4vTURdq0ehaKLLTpFhcfa7hIfKRxxlRvdpAW2nagBw3FcbaeMNe0/RJ9Gtdb1G20ifJl0+G7kS3kzjO6MHac4GcjtWPWfKkuVbWX4R5bmjld8z3/4NzsvhPaLfeLpIXmW2jfTNRDzujMkS/YpsuwUFsDqcAn0B6VNqm7T/AA9p/hXSruLW9QF9LqUsulK8iofKVVVG2gkgI7NgEAFecggc3oHinWvClxJcaJq9/o88ieW8thcvAzrnOCUIJGQDioLXWdQsdVXU7a+ubfUlkMy3kUzLMHJyWDg5z75zVt3a9Pydyf6/Cx3vjzxdbp4s8P3kdn5bweRq2oWxxh72URyTEegYKnB6cg1meL9P8MWN/faro/iNNXW4nE1lZJbTRTQAsHIuC6BPlGV/ds2TzkDrxtzczXtzLcXErz3ErmSSWVizOxOSxJ5JJ5yaipLSzWlv+B/kH/A/D/h2euan4k8PxeNtY8d2euW07ahHdSLoXk3K3STXELoyu3l+VsV5CSRKSVHAycC1pGq+Er3xlpXiqbxTZ6Sp01La502ezumnhnW1NvkFImQxkhXyG3ANjbkYPjNFKySsv63/AMw8z1jRPFpHgew0aw+IcvhKWwmuIbmFJL5IL+F23JIghjOW5dSJAvG33xymhavpWh2Hiye2nkFxc2/2DT4ZkPmmOSQeZIxUbQRGpUjPPm8ZANclRRv91v6/rqG333/U6f4aaxZ6D460i+1Cb7NZxSkSzFWYRhlK7iFBJAzk4BPoDWv4A1ez8E+MNQhHiQW8FzYy2kWv6X9oRbeRlDJIMosu0Oqq2FzjdgHjPA0VX9feK39eh3GuXkN94q0efUvHFzr14Z0+1a8j3Mi2sQYbShmRZiyfM3C4+7tyc1P8UdZ03W4dMuPt+maz4kZ5m1HVNJgngjulO3y2kWWKP97nzNzKuGBUklsmuAoqeliutzsvG11pusaF4avLTVraW6ttPisJ9N8uZZ42RnJckx+WVORjDk89OuMO403TI/DVnfRaws2rSzvHNpX2Z1MMYA2yeYflbccjaORgevGTRTerb7u/3u4loku2n4WPWLXTrKw0z4da/f6xaWUOnWn2mSxkWT7TMqX9ww8oBCrbsFR8wwRltowTU8G+IZ7W08TanqlhILOdDq9jKEKxpfJLsiZCeCAZXUgen+zXFat4w17X7C1sdT1vUdSsrXAt7a7u5JY4cDA2KxIXjjjtVWTW9Rl0iLSn1C6fS4pTNHZNMxhSQjBcJnaGI4zjNEvebfr+Lv8A5fcC6fK/y/p/eUicnJ5NJRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHfas5k1W8c9Wmc/8AjxqpVrVF26ndg9pnH/jxqrWpEviYVJF/q5v9z/2YVHUkX+rm/wBz/wBmFBJHRRThGxGQpI9hQA2inGNgMlSB7im0ASS/6uH/AHP/AGY1HUkv+rh/3P8A2Y1HQAUVvaR4K1PW/Desa7apGbDSfL+0sz4YbzhcDvzWDQBHcf8AHvL/ALp/lXIV19x/x7y/7p/lXIVEi4hXU6F4E/ty3tXOvaXYz3MUs6W1yLgyeXHv3MdkTKOI2OM5OOlctXS/D5ifEgBJIFlege3+jS1hVbUG4vZN/gehgo054iFOpG6k0uvVrt5GdruhrozWpi1G01SC4jMiT2fmBeGKlSJERgcr6dCD3rLrp/hqlpP410yC+sIdRtppNjRT7sDvuGCASMfxAj1BqxpOpLr/AImtJIdC06NLW1kVIVAjhQIrss0xYMJNmQTuB3hACDnlc7i2nrZXvp5/5Giw8KyjUi1HmlyqKu9fdu+umt7avpqchRXomq+H7TVvFHhZEe1vhqFr5k7afb/ZYrh1llXCIFXbkIq/dUnrjJrCfVh4qjtbKfTLO0YXkaJe2VskAhibKmNgqjf2IZyW+U8nJojU5tl6/fb+v89Aq4P2V+aXp1vopdG0tGtrq/W2pzSLvdVyFycZY4ArR8RaDJ4c1M2UlzBd/uo5lntixjdHQOpG5VPRh1ArrPGd7oqWuoaRZ2cktzaTbIx/ZcNo1mEYq+6VHd5geh8zBzg5HIOzJdWmqeI7XQLrTbNrS50WAy3TRj7Qki2SyLKsp5XbsA2g7SM5BzmsfbtrnS01fy0f9eflqdyy2HNKg5rmvFJ9E22raednfdLpf3TyeivSfDunQXXh1LS6h06xSbTbu4SKSBZry7kRZWWZZNm6FBsUbd4zsJAIZqwrK7PhXw/peoQ2FldyX8svmS3tslwNkZUeUquCF65LAbvmGCO+vtbycUtf+H/yf/D6HG8DywjVlL3WrvTVfD0v/eW9r7rSzeMdCf8A4R06uLq3aNblbZrYM3nKWVmViMbcHY3fPHTBBOZXpfgzTLXVLTW8QLaNDqkE9npE/wA5ncJcFLbLrgnHHzD5sYxlgK4HV9Um1i9a4nitoZCNuy1tY7dBj/YjVR+OM0Qm5TlHtb8Uv+CLEYaNKhTqp/FdabO0mm9dVpbS33FKrWpaZcaTdG3ukWOcAFow6sUyOjYJ2sO6nkHggGug+F1rDeePdISdQ6JI0wRujOiM6KfYsoH41H4LuYptevbi+srfVGNleT7bwMy+YsLuGwrDJyO/r64Icp8rfkr/AJ/5MilhlUhBt2c5cq7K1rt9ftK1vM5mivXY9O07xZMlhLp9hpscsel3Es9rbpG/mTNGkpBAG1SJPuDCggEAHOecMya/beJLC70+xs/7Mt2ntGtLWOF4SkqJsZwN0gKsR87McgHOc5zVe/Tb/gf5nXPLHC1p3vtpu9dH22+99rtcLTxE5iaQIxjUhS+OATnAz6nB/I13N9FHe+CGbS4rGWG2toTe20tpFHe2sm5QZhLt3yxuT2Y7fMAIACk17LWbi2+Fd5bJHaGNtTSMtJZwu+GikJw5UsDxwQcjsRmr9o7NpbNL72v8zD6nFTUZS0cXK6V9k3bfyt3T0aTRxdFFdZ8PDYG71UahpcGpxpp1xMomZ1KMkZI24OOfUgkdsHmtJy5IuXY4sPS9vVjSvbmaV35+hydFd14furHV7zW/EGoW1vYraQw7YbDTY54YmYrHv8h3VD05ySNz5x0phXTtd8Q3F/aabvtrbT5LkxyQC3ju5I15fyoyVRc4JRWI+VuQDgZ+1tutlr91ztWB5oxcZr3nZeava9tWtfL53snxFFdnpMkXjjXdCgvdMhgYzPHNPY2yQLcqAGWPy4wihhyMggkOvoDUuta5o2omwNrp66i0FyGklk0yPT4/KPAhdIJDv5GQ5YN1GWzw1NuSjbX+v66EPCR9nKqp+70vpfRN6b6X6Jr5anD08xOIlkKMI2JUPjgkYyAfbI/MV6H40lsZ08X2VvpFlYw6ZqgFq8EKrKo8yRXBfGWU8HaeF2gAAVm63rNw/wANvDloY7TymmulLCzhEnymPGJAu4Hnk5575xUQrOaTS3/yubVsDGhKpGU78qb0XVT5LataX1v26dDi6KK6yyuz4V8P6XqENhZXcl/LL5kt7bJcDZGVHlKrgheuSwG75hgjvvJ226nn0qaqNuTskrvr1S/No5OtLw7oj+I9ZtdNjube0kuXEaS3RYJuJwo+VWPJIHA784GTXUeGhHA+r3SWNjpFt9rRBc6tEt2tshLn7OsTxuXc4HzYBGzkqGNR22nw6V8ZoLO2XZbwa6kcaj+FROAB+ArF1NXHZ2/y/wA1/wANa/dHBqMYVW7pySa26teTs+V62Xa900uSgsvN1BbWSeK3HmbGmlJ2JzyxwCcD2BPoDU2u6RLoGs3umzvHLNaytC7xElGIOMjIBx9QKgv/APj/ALj/AK6t/Otz4kf8j7r/AP1+y/8AoRq1J80V3T/T/MxnSgqVRpaxkl8nzf5I5utXWvD8mi2+mztdW11HfQeejW5Y7cMyFW3KOQykcZHoTWVXSeJf+Ra8Jf8AXlN/6VTU5Npxt1f6N/oZ0YRnTqtrVJNf+BRX5M5uivSb3ToJfCGpwzw6dYzWen29zBYRQK93GxeINLLOEB+cOxEZdiu8AgbVqlocUd94Pe306Kxlv0t7iS7sry0i8+ZAGInt52Ut8gHMasD+7JAbLYz9to3bZ/8AB/rp5nb/AGc1OMObdX21ve1rXvfy0bXS+hwyRPIrsqMyoNzkDIUZAyfTkgfiKsWGl3Opi4+yxiVoIjM6b1DbB94qpOWwOSBkgAnoCa6nwbrNxpnhHxYIY7Rx5MDf6RZwzdZlX+NTxg9Ox5681ieDbiW18W6LLD/rFvIcDGc/OBjHfPTFaKUpOSXT/I5fY04+ycm3zavy95rR6327IxqK6LV2g8LePr821rbXttYajKIre6TzIZFSQhVdeNwwBkd6w7u4+13c04ijgErs/lQjCJk5wo7AdqIT50pJaNXMq1H2MpQk/ei2vu6kNFFFaHMFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB3+sHOr3x/6bv8A+hGqdX9fj8rXdST+7cyD/wAeNUK2e5juFSRf6ub/AHP/AGYVHUkX+rm/3P8A2YUhkddxoP8AyCLb6H+Zrh63tP8AEy2NnFAbcuUGNwbGefpSauNG1r3/ACCLn6D+Yrh63tQ8TLfWcsAtyhcY3Fs45+lYNCBu5JL/AKuH/c/9mNPsbRr+9t7ZHjjeaRYw8zhEUk4yzHgD1Jpkv+rh/wBz/wBmNR0xH0L4e+Heu+Efhn8TfD95ZtLfyNZC3FuC63IaQhWjOPmB/PscGvGfG3gq/wDAOtDStTe3a8EKTOlvKJPL3DOxsdGHcfQjIINegeC/2ktd8I+BbvQfL+23SqE0++lbJtV6YII+YDquenTkYFeS3d3Pf3UtzcyvPcTOXklkYszsTkkk9TQBWuP+PeX/AHT/ACrkK6+4/wCPeX/dP8q5CokXEK1fD3ifUPC129zpzW6TuhQvPaRTkAgggeYrYyCQcYyDisqioaUlZmsKk6UlOm2mtmtGauk+Jb/Q9ZOqWRt4r0lmDNaROiEnJ2oylV9sAY7YpbDxRqGl6vNqVq8ENzMrxyKtrF5LI4wymLbs2kHptxWTRU8kX08vl2NFiK0bWm9HdavR9/Xz3N3UvG2sao9g808MUlg261e1tYrdoedwCmNVIAOSB0BJwKi13xbqfiNgb2SD/WGUi2tYrcO56uwjVQze5yeT61j0UKEFay2Kliq801Ko3e19Xrba/e3Q3dY8a6vr1u8V5NA/mYMssVpDFLNjp5kiIHk5APzE8gHqM0tz421a708WckltsEK2/nJZQJcGNVChTMEEhG0BTluRwcisGil7OFrWQ3i8Q25OpK703ex01j8Rte061toIZ7UpbQm3jeawt5ZBEd2Yy7Rlih3N8pJHPSqul+NNW0ezmtLeWA2sk32jyLi0hnRJMY3oHQhGwcZXHQegrDoo9nDX3VqP65iVy/vJe7tq9NLadtNPTQ3bLxtq1hYtaRSWxjacXLPLZQSSmUEkOZGQvkEnv3I7mqeva9eeJNRe+vzA11J994LaOAOSSSzCNVBYknLEZPrWdRTUIp3S1Ilia04ezlNuPa7t93zf3lnTdRn0jULa+tX8u5tpFljfGcMpyOO/StQeJP7M1m5v9Ghjs1uYnR4J4I50jDjDogcMNvUA4zg4yeScKim4qW4oVqlNWg7a3Xk11T6f12R0Nz491q7tJbZ57dYpYYrdvKsoI22RHMYDKgIwccggnAznAqLVvGeq63bPDdy25EhDSyQ2cMUsxHP7yREDSc4J3E5IBPIzWHRU+zhvZGjxeIkuV1JNbbvbXT8X97Nu58Y6pd6Z9gke1EHlJAXjsoI5njQAKrSqgdgNq8Fj0HpVfT/EV7pmnXdhC0DWl0QZI57aKbDAEBlLqSjYY/MuD71mUU+SNmrEfWKzkp87utE7vbsFaugeJ7/wzJcPYG2DTxmKT7RaQ3GUPVcSK2Ac84696yqKppSVnsZQqTpSU6baa6rRmnpHiK/0K8mubOSJHnRo5Y5II5IpEJyVaNlKEZAOCOMDHSpo/F+rQ65Bq8N0tvfQcRGCFI4415+VY1UIFOTlduDuOQcmsaip5IvVo0jiK0Uoxm0k77vfv6+ZrXfinUry/tLwzR289oweD7HBHbpEwOdypGqqDkDJxk4GasXvjbVdQuYJpTZBoZfPCQ6fbxRu/wDekRYwsh5P3wcZPqawaKOSOmmxX1mvr77131etu50V5491i/j1NJ2sXGpNvumGm2ytI394MI8qe+VI5JPUk1QXxFeroh0ktA9jvMirJbRPIhOM7JCpdM7RkKQDWZRSVOCVkkOWKrzfNKo29Vu9nq/v6hW3o/jHVdDsJLG1mha0eUTeTc2sVwqSAY3oJFbY2O64PA9BWJRVuKkrNXMadSdKXPTk0+6djc0vxnq2j29zBBPDLFcTC4kW7tYrn96AQJB5ittb5j8wwaX/AITXVj4kGvGS2bVd2/zmsoCu/wDv7Cm3dnndjOec5rCoqfZwveyNvrWIUVD2jsndK70e9153bfzL8utXM2rnU3S2NyXEhX7JEISf+uW3Zj224NO17X7zxLqUl/ftC91J994beOEMfUhFUE89cZNZ1FPlirabGbrVZKUXJ2bu9d33fd+YVr6t4p1DWtPs7G6+y/Z7NdsAhsoYWUc8bkQMQSSTknJJPXmsiim0nuiY1JwTjGTSej8/U6iX4k6/PbywyT2kizQLbTM+nWxeaNQAod/L3ORtXBYkggEHNUrbxjqlppSafE9qsKRvEkhsoDOiMWLKsxTzADubo38R9axKKj2cNuVHQ8ZiW7urK/qzS0XxDe6A1wbRoStwnlyx3NtHcRuoIYZSRWXIIBBxkU/w9q0eiakuomMy3dviS1XA2CUEbWb2XqAOpAzxmsqiqcU7+ZlGtUhy2fw6rsvkXNN1e70nVoNStpdt9BKJo5XUSYcHIYhgQeeeRUF1cyXlzNcSkNLK5kchQoJJyeBwPoKiop2V7mbnNx5W9N/n3CiiimQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB6P4q/5GjWP+vyb/wBDNZdanir/AJGjWP8Ar8m/9DNZdamQVJF/q5v9z/2YVHUkX+rm/wBz/wBmFAEdFFFABRRRQBJL/q4f9z/2Y1HUkv8Aq4f9z/2Y060s7i/mEVtBJcSkZ2RIWbH0FAENFaf/AAi+s/8AQJvv/AZ/8Kr3mk32nKrXdlcWqscKZomQE+2RQBQuP+PeX/dP8q5CuvuP+PeX/dP8q5CokXEKKKKkoK7P4YfaJ9T1K1tdPt9SuJLCeSGCawiu2MqISmxXRjnPYde+a4yup8BPp8Vxqjahq1tpayWE9tGbiOZ97yIVGPLRsAHGc468ZrKtrTl6M78vfLi6TbsuZX1S0vrq9NibxYuvRWNrb67ottpU0826DOlw2EuFGGztjQlSXHJ4yprI8U6Xe6RqaW9/9k88W8LD7EYzGUKAqd0fyscYywzk85J5rNYlmWAzgwq52sS2wZwCwGM84HbPFdD49ewmvtPew1W21REsbe3c28cybGjiVDnzI04JBIxnjrioScHFW3v0/q36m1SUa8KlRyd1y2vJN+fZy12tsg8WtHPovhe4W2treSWycP8AZ4Vj37Z5EBbaPmO1QNxyTjkmoV8F3L6bLOl7ZveRW/2uTTVZzcLDgHefl2cKQxXfuA5I4OLHig6e3hzw5Ha6va31xa27xTwQxzKyFpZJOrxqpADgHBPOeo5rb8VeJI9fsTM3i+6fTZII2Ph4yXBZJggG0Ar5O3eN2d2Qp6Z4qOaSVorq+nnp/X4o65U6FScpVJJtRh1X8qvrdK6fq/7rPO66rwrr2laVbWyX1jb3Lpfid2ltlkLReUy7ST1G4g7emRntXK0V0TipxcWePQrSw9RVIbrudZpC6jceGUbTtMivZo7lo2ZdNjncJtBGSUJ6k8msq6s5tQ18Wlx9k065JEcrOFghRgOSQAAvTnA61s6Z4cj1XwpAn9taRaSvcNN5V1dbHUY24IxweM/QioZPBivqlvC+t6a0Lgefei+iZVPOcKWDHAwOnWvqquGr1Y0rQco+59pWen/kvm27dz5mFejTqVLySfvdHf7+vocu6FJGTIYg4ypyD9K6uyihg8aWWnrbW8qRBLSRHiVg74+ckEctuLDPUYHpUOi+HHtNZgmuLrTTBA/m5/tG3IfbyFxv/iIA59eafoWkXMHiK0vLq609UE4eSQ6lbnGTyeHzXPhMNWpuneD1mr6bJfo7/gbYivTqKSU1pF9d2/1VvxMm68O3FvaxTxzQXaNKIH+zvu8uTHCNkDrzgjKnBwTTdT0N9MjLG5gudkhhlEO/MTj+E7lGeh5XI469K6JPDa6fY/YG1TSryK5uYpJpbbUIgI403A/fKkk7/Tt71e1zRFl0S4tbfVtCdUuVlgt7a7jQeXhlxkkZbkZLEnA+8elbyyxulOSg00tr317Lvf566dDH6/acVz3V+3TTftbXttc5I+HphaySfaLf7RHH5z2m5vNVOOTxt7g43Z9qvX2nLqot7kyWmmxLaRvJIYmWMsXZQMIp+Y49MnBPY1o634WgvJ59Qh1TTSZxv+xi+hEiSHqCS23aDnkEkjAx6ad1oMN/o1ppk2u6IFt4N0MyXqfJLu+ZW7kMCOecFPwO0cumvaU1T2tbXSVuazvdW07dbfCnpnPGxahPn1vrpqtNfX+t7WONt9BNy1htvrZVvHaNXYSYRxj5W+TPO5emRz1FPg8MzS2s9zJdWltbwzeQ8ksuSDzztUFsfL6ZPXGASOg0rw6qwaf5+raVAbK8eZlN9ExlU+XgphsfwH7xXtRP4Te4stVVdT0sRNfRvHO17H5bjEnGQTg/NnBA4BxnFZLLXyKXsru17X62i9etr83b1NJY5Jte0/D+9bTztbv6bnMy6FcQ62mmNsaZ5ERHjbcrhsbWU9wQQR9atPph8Ra3fLp32aGCMO0YeRYwY0BxjOMkhck+5JwMmtsae66pLci707FrZC3tz/aFuPMcRiMN9/jqWGccAd6p+HPC901/Kr3Onxo1tOpk+3wuEzEwyQrk4GeTjgVmsDL2ipKm3Fyl9y0jrbTrfysy3i1yOo5pNR/F6vS/kvyKMXhSSe7sYo7+ykivSUhuVZ/LMgIBQ/JuDcjqMcjmqDaURavMtxFIROYEjVX3yH1UFenI64PI4rfl8PXi6baWFndafdTJLJdM8GoQ/Kdq8DLg8BCScY6c8Va1SymGtWNxGLBFhdLieFtRt1zMSGkwC/AyAPwpywCa/hNapXtJ7pXt/h9771v1I4v3kvaJ79ls3a/rp+Zzl3oMlraSzC5t52hZVnhhZi0RPAycbTyMfKTTpfDssUM2Lm3kuoFLzWiFjJGo6knbtOOMgMSO44ONjUfCEVlO9xZ6tpl7mQNDGt9CrIM5/ebmA9sKT9fXRudHSLVr/WINT0uT7UsxWz/tCISq0qsCGO7bgFj0Y5x78JZdJ83NTs+ut7b6rv0utfldWl45WTjO+/S2umj7LfXT101x/Dek+VO7TvZO0lpK5tJxukCeUzK4yMA5CkYO7HOMc1ladob6iiH7Tb2zStsgSdmBmb0GAQOSBlsDPfg47ODQbafV01Nta0m1ElsY3tnvYy8chhMf8JIK55yDnB6VBa6beNoltaReJbLS/I8yOWIaogSZCxYMoRiCfmIw2OgrreXOyhKF1HmtqtdY26q102/W+j1Rh9d95yjLV2v5fFfo79F+vU5PRLBZ9bhhuUKxRMXnVh0RAWcH8FNSaPYR+IdbMc08VikpeU4QhRgFtqhQcflgAfQVqWehvZ2mqNHc2AlmUQQo2o2+7YWyzEh8dFA/4FTfDuhTWesQSz3WnRRYZWc6jbkLlSMkBycc9q8+lhKilRhKm2m7vR9Xaz22Sv8AM7amJg41JRmk0rLVb2vp96XyMKLT/tF60EVxC8a5LXHzLGFHVuQDj8MnoASQKnm0GdLqzhhkiu1vCBBNDu2Od20j5gCCDxggfkRXQ6Fok+j6ndxjV9OhWWBokv7bUogEbhg33g+MqAeM8mmXXh65m1a0kn8QWd3MXBlvxqcZEYyNpBZg5I5PT0xTjl8vZxbpu7evS2u2r2t1tbrzaNCeNj7SymrW+/T038r/AC105vUNPSyETR3kF7HIDh4N4AI6gh1U56du9Wtc0aDSUtDFfxXbTQrIyxq4K5Gc/MoGPxz7CtzxLob3ht5FvNGur9i5ubm0v4USTptJDMvzfeyQMHg8nNRa34dku7awnh1DSnkW3jhe3/tCEOhUYJJLbcfQnrSq4GcFVUad9Y2321vbXXpde9bo3uEMXGXs3Kdt77fK+m3bbz7HJVvReDrqUWqm7skmuo/Mt4fP3NKckbQVBUHjHJAycZyCA6Xwg6afBMmo6bJcuzCS2+3QAxgdDu8zBzz06Vtw+HHtX0C9mv8ATYvs0IkaBr6IO+2Z2G07tpDZwDnGQc4xTwuXTbft6T+z8k9/VpdOj3W6HiMbBRXsqi6/gn+F1v16Pqcz/YDmysblbu3YXcxgEaiTdGwxnd8uONy9CTzxnmr2j32n6INTtruK2v2aSARzeT5i4SUM+0sAQCoIPHI4rS0rSb60tL2W6FlskH2i2cX9uFE4JVSDvxjlvxUelchdWr2Vw0MhjZ1xkxSrIvTPDKSD+BrjxmG9lThJ03G9nqn09e7TfpY68Him6suWadrro91+l7epPrVzDe6xf3FtGsNvLPJJHGiBFVSxIAUcAAdu1UquaPaW19qtpb3l5/Z9pLIqS3XlNL5Sk8tsXlseg607XNNGjazfWCzrdLbTvCJkGA4Ukbsds+navJVo2h/Wh6k1OqpV3azeu27u9t7b+RTRtjqxUMAc7W6H2ro/H/ltrNrKkEFsZ9PtJnS2hWJN7QIzEKoAGSSeBXOIod1UsEBOCzZwPfiul8evYTX2nvYarbaoiWNvbubeOZNjRxKhz5kacEgkYzx1xUy+OPzN6Vvq9XVfZ6q+/Rbv5bFPXNGvtOttHF0bLZc2++3a2eI5QyMP3jpwWzn7xJAGDjGBpar8NdR0e2vXuLzTzcWtvHdtaRXHmSPC+z94pUFSAXA+9zgkZXmm+JRp0vh/w1DbazaXc9tA0M8UUc6mItLJJklowCAHAOCTnOARzW7fTaJPrWqzJ4m08wzaPDaRv5F180qxRoRjyc9YicnjDL7gYOc0tPPo+j0+89KOGw8pNSafwWvOOl4u/ryvp02ZzGk+C7nWLaEx3tnFeXKs9rp8rP59yFznbhSoyVYAOykkcZyM89Xob+JE1LwzptuPGFzpNnDafZr7RQ9z++2k8xqqmI7l2jDsvIOeOa89bBY7QQueATk1tCUnKXN/W5wYqlRpwp+yd20ru66pPZN2s7727W0bfT+B11K7vlsdF020vdQncb5L20iuEjjyAOJVZUG48tjP3QDyQc7xfHDD4p1VILRrCFbmQLbOhQx/MeNp5H0PTpTdI0a01KF3uNd0/SmVsCO8S4ZmGOo8qJxj6kGr+q31r4t8ZpJd3zWdnM0MEt80LSMFRFjMpReSTt3bRzzjPelb97ddv8vv/ruVdSwag3rzK2q2s76bx13b307HN05EMjqowCxwNxAH5npVzXNNGjazfWCzrdLbTvCJkGA4Ukbsds+naqaKHdVLBATgs2cD34raLUkmup504SpzcJbp2Zu614f1GHX7bTbo2C3ksUOxoJYUg2sgKEyLiM8EZbPJ5JJOaseIfh/feG7W+luLuymmsbkW11bQSs0sJO7Yx+UDa2w9CSMjIBNWvFI0y71/Rjba7ZXNutrbW8twkVwEhaONEYsGiDEEgkbQTjsKv+ILjR7t/Gs8HiCxlN/e/abWMQ3IaVd7PgZiAB+fHzEcg9sE8nPO0bfPR91/wT3nhsO3WTabWz54/wAsn89VFdtbWuef1uaT4QvdSshqE7w6XpO4r/aF8xSJiM5CAAtIeMERqxHfA5rDrsbvxbY+MzEPE8c0V8kawpq9iAWCKMKskBIVgBgAoYyOSd54roqOSXu/1/X9Jnl4WFGbftXr0Wyb83rb7rd5R3HD4Z3E9r9rg1XTRaNB9tTz5wsotvMKGV0TcFwcZTJbnADEECg3gia1vL2O+1Ow062tpfJ+2ztI0Uz43ARhEZ2BUhs7cAEZwSAd9pdFi0s248R2Mrpoj2Y8uC5w0v2oyhRmEdVPU8Zqz4q1XQ/E9vLpaa7aW32a4juIL6WG48mZTbRRyL8sZcMGiBGUAIzz68qqVOZrW2vTzt+X+Z7ksLg3TUo8qlppzppvlba30V9N+yvd3OS/4Q27h1O6tby4ttPhtVV5b2dmMAVxmMgorM28EEBVJxk4ABI6Hxf4bGp63awxTaVZTjRku2Fqm2G4KIzNs8pCu4qpPzbenJB4p13rmj+ItNvNGm1GLT/JjsltdRuIpWimMEbxuCEVnUN5hK/L0UAgE0XWo6LB4g0RotagubVNKfT5rhIJgIZDDJHuYFASuXByoJwOgPFKUqj73Xl/d/z0sEKOFhFxUk4yte8lde/a262Wt15u9tuT1DQm0rTdK1L7Va3sF7vKpF5mY2TbuRwyrz8w+6SPQ1oePVSTWrSSK3ggafT7SZo7WFYkLtAhYhFAAySTwKseIhpa+FtFsLTW7a/ubS5nEwjhmRdsgQh1LoMqNpByA2eikc07xXf2Frr+i31hqdtq6WttaxuLdJkw8KIpB8yNOCVOMZ464raLcpRb8+hwVKcKdOpGLVrQejT1trbXWzve2xSu/BcljZy3L6ha3K2jol/BZ7nmswx25YMqo3PHyORnAJGRUWqeELqzs5L+ymh1jSkxuvbElhHk4HmoQHiJPA3qASDtLDmug8aarDrss7SeNbjV7CSffZWM73TG13HrKHTaAikg+WWJOMDByKdh4q0/wLcCbw0JbvV1Vk/ti8XYseQyt5MAJGCDjdIWyP4ENRGdRxvbXtb+vv8AzNqtDBxquF0oL7Skm93qkm73XTS7W8EzjaKUnJJ9fSkrsPnwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD0fxV/wAjRrH/AF+Tf+hmsutPxQd3ibVyOhvJj/4+azK1MgqSL/Vzf7n/ALMKjqSL/Vzf7n/swoAjrodJjRvDd8xUFgXwSOR8ornq29Nv4INBvIHkCzOW2rg8/KKTGibVo0Xw3YsFAYlMkDk/Ka56tvUr+CfQbOBJA0yFdy4PHymsShAySX/Vw/7n/sxrr/hKniuTxhGPBsixa35Mm1n8vGzHzf6wFa5CX/Vw/wC5/wCzGt3wLpFhrmvpa6lr6+GrUxsxv3jLgEdFwGXr9aYj6C+yftE/8/sH/fNj/wDE15h8ZJfiY1jpy+OS01iXL2sqxQCPeV6bogOcdm9DxVj4aeDtF8Q+Ntc0++8VNc2enxSvZlWaP7ftDYcc8AABiuckewJq3428SeHvDnwlHg7TfEUni2+ur1byS5aNkjtVAHyrknnI6Anqx47oDxS4/wCPeX/dP8q5CuvuP+PeX/dP8q5CpkXEKKKKkoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAq3Hq19FZNZpeXCWjfet1lYRn6rnFVKKuM5Qvyu19CZRjL4lcKtWOqXmluz2d3PaOwwzQSMhI9Dg1VoojOUHzQdmEoqStJXRNDeT21yLiGeSK4B3CVHIcH1yOajd2ldndi7sclmOST6mm0UuZ2tfQdknewUUUVIwooooAKKKKACiiigAooooAKt3erX2oRRxXV5cXMcX3EmlZwn0BPFVKKtTkk4p6Pclxi2m1qiZ724ktUtmnla3RiywlyUUnqQOgNQ0UUnJy1bGklsSW9xLaTxzQSPDNGwZJI2KspHQgjoajooqSru1gooooEFFFFABRRRQAVJb3EtpPHNBI8M0bBkkjYqykdCCOhqOigabTugooooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHoniMbfEOqA9rqX/wBDNZ1anioY8T6v/wBfk3/oZrLrYyCpIv8AVzf7n/swqOpIv9XN/uf+zCkBHRT441fO6RY8f3gefyBp/kJ/z8xfk3/xNAENFTeQn/PzF+Tf/E1HIgRsB1kHquf6gUAOl/1cP+5/7Majq7Z2T6leafaRkLJcMsSk9AWcgfzrsZfCPh+3kaItqNwUO0yLLGgYjqQNhwPxoA4OKV4JFkjdo3U5VlOCD7Gm13n/AAi/h7+5qf8A4Ex//G6P+EX8Pf3NT/8AAiP/AON0wPP7j/j3l/3T/KuQr0jxnoUWg3Pl28zT209v58TOMMFORhvcFSK83rORcQoooqSgooooAKs6Zarf6laWzP5azSpGX/ugkDP61WpQSDkcEUAd94zvdFS11DSLOzklubSbZGP7LhtGswjFX3So7vMD0PmYOcHI5BhuNVsNL8BaRJDoGmte3gu7WW6lRpG2gIN4DMcSZOQw4GOAMtnD1jxrq+vW7xXk0D+ZgyyxWkMUs2OnmSIgeTkA/MTyAeozUN54q1C+0S20mb7KbG2OYlSyhSRT3PmBA5zgZyecDOcVxxpSUUpd9dfK39fme/Vx1GVSpOnpeNo+6tPeTW7fTS99NkkkdF4f1Ww0XwM+oHQNNv8AUINSjiWa8RpFdWjkJDoWwRgYAG31OSARCbkeEvD2gXNtZWF5/acck1y15aRzltsrJ5QLg7AFUHKbWy554XGHF4q1CHQJNFX7L/Z7v5jK1lC0m7+95hTeDyQDu4Bx0p+l+L9T0ey+xwvbTWwcyJFeWcNyI2OMlPNRthOBnbjOBnoKt03zOXdrrurWt9+pnHGUlCELtWi1dJJqTle61V7r3btpnWWWlaRonjfxVp8ulw6lZW1tdSQLcSNvi2oWUAg4zyASQSMcbTzXD61qh1rUpbw2lrZGQKPIsovKiXChchR0zjJ9yataN4t1PQrq7ubaWCSe7Vlnku7WK5Lhs7s+ardcnPr3rJdzI7OcAscnaAB+AHApwpyjK8nfRL/MwxOKp1aXs6at70pWslo7WV1q7a+l9BtFFFdB5YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAej+Kv+Ro1j/r8m/8AQzWXWp4q/wCRo1j/AK/Jv/QzWXWpkFSRf6ub/c/9mFR1JF/q5v8Ac/8AZhQBHRRXqNp+zX4+vrSG5h0uBopkWRCbyIZUjI/i96APLqK9DtfgJ4zvLLULuLTomgsJZYZ2N1GNrR/fGM84x2rzygDa8L/8jPoH/X1D/wCja9I8MxaPNr7LriXj2GHyLEAybu3XtXm/hf8A5GfQP+vqH/0bXrfw4l1CHxhu0zVLPSLrZJi5viPLA7jkHk0AWbfwzb6140gTwpZX9xYQNDJIl2F81RuG4kf3a0fjp4avrLxvqepmzMOmTNCkM3ARyIUBAH1B/KujuvC2u3nieLxA/jvw8uqRBQs0dwFGB2IAwRjgjvXN/GSPU7y7t9T1HXtL1TzGMUVrpkxdYABnp2z696APF/iT103/ALB3/tWWvJq9Z+JPXTf+wd/7VlryapkXEKKK7nQ9LtfE/gj+z1t4l1yGWeaxljjVXuERY2khYgZdsMzLnJ+UqOoFYTnyK7OzD4d4mThF6208329XsvOyOGorsL3T5vFd1A7Np2l29pp0c1zdLaiGJFJA3OsMZLEs6rkKTyM8AkVbbwHd3F7qMJv9Ot4LCKOeW7nnKRmKTbsdVI3sCHU4C5GcEbiAUqi2ZrLB1NHTV09unS+1/XXbRnM0V1GtfDzUtEmit3mtLq7e6Nk9vbTbmil4KhiQFwwOQQTjnOCCKktPD8ug32manb3mm6zZm7W2keKIzRRyEfcdJowDlckEAqcHByKaqRlble4pYKvTk1Ui1bfv56dbdV062OTor07xva+JNOm1/wC2eGbax0OOWSKKZtCgtflL7Y/LlEQYnoeG5ANcxF8P78+H49ZmvNNtbKWKWSIy3a7pGRQfLAXP7wg8KcHjnGVzlCvGUeZ7ev4ep0V8uq06rpQTbV73VtE7X3el+pzFFdPoPw/v9e0pdTF5ptjp/niBri8u1RY2IYjeBkqCVwMgZzkZAJFXSvCjajaRXFxqdhpS3DFLZb1pAbgg4O3YjbRnjc+1c55+Vsa+0jdq+qORYSvaMnGylqm9FZddenS/V7GFRXQaR4F1bWtT1HToYoYr2wWRp4bidI2BTO4AE5Y8HOOB1JA5qB/De3xNFo41XTHEjxp/aC3H+iLuAO4yEDAGcHjggihVIt2T6X+Qnha8Y88oNK/Lrpr2/wA+xjUVNd2/2S7mgMkcxidk8yFtyNg4yp7g9jV3w34euvFOtWul2TQrc3DhEM8qxrn6nqfYZJ6AE1XMrc3QyjTnKoqUVeTdreZmUVu6z4QudGsLS6a5tLtZ5Xt3S1kLtBMoUmN+AM4YcqWHXng1Pq/ge60nCfbrK5uEuVs7mGN3Q2s7ZwkjSKqfwuNysyjacnGCZVSLtZ7/ANf16rubPCV43Tjtv89f0em+j7M5uiu3ufhPqNq0itqekuySzW22O4ZibiMbjCMLyxXkH7vOCwbisnSfBdzrFtCY72zivLlWe10+Vn8+5C5ztwpUZKsAHZSSOM5GZVam1zJ6f1/XpqaywGKhJQlBpv8A4H6tL1dtznqKK1vC+pWuk6uLm9toruAQTr5U0YdS7RMEODxwxU/hWsnZNo46cVOcYydk2te3n8jJorQ0fSG1eeRftEFnBEnmTXVyWEcS5AydoLHJIGFBPPTrVy68I3lvrVppqTWs5vEWS1uRMI4JkbOGDSbcDIIw2CCCMZ4pcyTsWqFSUOeMbr+um/lfvpuYdFdB4i8F3Xhm7gtLq8sJLySaSB7eK4G+BlYAGTdgIG3Agk9M5wQQLGvfD3UfDoiS5uLGS9lliijsbe4Ek7iRNyuoAwU/hyD1xjIIJhVYNJp77G0sFiIOalB+7v5aX1OXoroNQ8HS2dhc3MGo2GovZ4+2QWbuz22TtyxKBWG4hd0bMMkc4IJni+H9+fD8eszXmm2tlLFLJEZbtd0jIoPlgLn94QeFODxzjK5Pawte4fUsQ5cqg72v8r2/PR9nozmKK1rLUrWDw1qdnJbRSXlxPA0U7RgvGiiTeFbtklM464rJrRPVo5pRUVFp3uvu1at+F/mFFbPhfSb7Vry4Fj9j8yK2lkcXjRYKBGLbVfO5sAkbQWHUYxkV9E0Z9auJU+0Q2cEEZmmubgOY4kyFyQis33mUcKevpk0nJJtdi40ZyUWk/ebS7aW6/PXsZ1FXNW07+yr+S2+0w3aqFZZ7csY3VlDAjcAehHUA+1T+G/D114p1q10uyaFbm4cIhnlWNc/U9T7DJPQAmjmXLzdCVSm6nskryva3nsZlFb+qeC7zTbWymSe1vmup2tTFZuXeKcBSYm4ALfOMFSwPPPFLqHg6WzsLm5g1Gw1F7PH2yCzd2e2yduWJQKw3ELujZhkjnBBM+0hvc2eErptOO2v6/lfTdWfZnP0V0eoeFrSy8H6brC6xbS3N3JKpsgkocBSgwD5e3I3EnLY5GM81zlVGSlsZVaMqLSn1Se6ejV1t+W4UV1/gPQHk1fSr2afTIUluVWC11QbhdjdtcBSpTAyRlyoJ4BJBxUufDqX2u6yzXlnpFhb3bx+fchxGpLNtRVjRmJwp6LgAc44qHUSly/1/Wp0rB1JUlUXV2t8r38tFfW2muxzdFdj4T8IqvxI0/RdYltoFW6jDiXe8c6kqQqlFbIdSCCcAg8kVna5NPrWuw2yXej3bDCR3FjaxWFu2efm3RxDg8EuB9cUKopSSXa4pYWUKTnPR3cbaXurXur369E/kc/RXSnwlqmseOZtBJso9Ve5aFtrxwQB88hQAFxnoqjnoAar614RudFsLW7a5tLtJpXt3S1kLtBMoUmN+AM4YcqWB554pqpF2V9WTLCVoqU+V8sW029Nt16q+q6GFRXQaj4NuLDTrm6W+s7x7NlW9trZnMlqWOBvJUKw3fKSjMASAeoroPDvhv+ztJ8Qrdy6VcXH9mvJJZSKGurRhgoQWXAbnkIxYdGAxgTKrFRclqa0sBWnVVOStf/g/qmmt1Z6aM8/ooorY84KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA9H8Vf8jRrH/X5N/wChmsutTxV/yNGsf9fk3/oZrLrUyCpIv9XN/uf+zCo6ki/1c3+5/wCzCgCOvvLw7rXjRfD+mLF4W0uSIWsQV21tlLDYMEj7OcfTNfBteo2n7Snj6xtIbaHVIFihRY0Bs4jhQMD+H2oA+iUg8aaB4b8Sxy+HtLkivZbu8Z11hsxiQEkAeR82PqM+1fEteo3f7Snj6+tJrabVIGimRo3As4hlSMH+H3ry6gDS0i9TTdX0m7kBMdvNHKwHXCyZP8q76eK0lld4NV06SFzuVmu0Q4PqrEEH2rzOX/Vw/wC5/wCzGo6APTfs0P8A0EtM/wDA6L/4qj7ND/0E9MH/AG/Rf/FV5lRTA6D4h31reXcMVrOtylrZiBpU+6zbnY7T3HzYz7V5ZXX3H/HvL/un+VchWci4hXRQ3celaBpF7ZatEmr219JOLVEkEsPEex9xXYeYycBs8j3xztFZtXsb06jp3st1brpqndW66Hog1zw7rmv6jqRay0idrOI2ceoW0k1pFcZXzRsRHyB8+wMpXGMjpU/iLU9I1e51uceJLKWS80u0t1Zre4UtLG0O8YEWB/qmI7cr7geaUVgqEU003oeq81qyhKEoRfNvur6NX0aWz7HrL+KtC0vVbi8i1lLyOTXUuttrFMkogMLqzqWRQCDJwM5yvTHNYGo3cd/q+nNqnjj+3mjnBjupzdyR28YOW3+ZHvy2FACBh1yRgZ4WiiNBQfMm7/LordhVc0qVouEoK127e91d39rX53tbSzu322v6fo1zq+t6iniyxmt7mSedLW2iuxLLklo0O+AIPm25ycDrziqesNp8ngbQ4YdXtZ762kmeWzSOYSKJNmOTGEONpzhu4xmuVoqo0uVJXenp6djCpjfaOb9nFc97/F1afWXdem+h1Vu2nn4d3Fs2r2seoNfJcrZNHN5hVUdMbhGUydwI+bp6Hipml0vxN4b0W3n1i20e80tJLd1u4p2E0bSNIrIY0fkF2BDbe3J5xx9FU6et79b/AIW/IiOMaio8ity8r31XNza6737WO/sNe03XPF3iXU7rUYNHgvba4hg+1pM7MZEKrny0fB6FvrxmuM020tbnVoLe7vlsrN5Qkt55bSCNM8vtA3HjnHX6VToojTUNn0S+4mripVkueK+Jye+rla99dtOliW6jjhuZo4phcRI5VJQpUOAeGweRnrg1ufD+6s7DxnpF5f3kVhaW1wk8k0qOwwpzgBFY5OOOMepFc9RVuPNFxZjTqulVjVilo721to723vb538zrXg0mDwolo+u2lzImpGV4baKfe0WAhZS8Sr0BYAkHGOM8V0mvajoU+hahpVl4h0mKz/tCGeygt7K5jCwr5inzGMO55MOpJYtwDhugry6isnSu73e9+nl5eX4s74ZhKnFxjTjquX7W3vX+115vTRO10es2+s+H4/EUV43iKz8ka9dXxP2e5/1LoCrf6rrlcY9T6c1lS+I01Hw3p1svjG40uzgtfs17o6vc/v8Aax5jVVMZ3rt4cryDnivO6KzWGila76dul/LzNpZvVlf3Er325lu0/wCby/O9xWwWO0ELngE5NJRRXWeHudd4C18aTFq9qNZm8PXF3CnkajE0qiN0cHaxiBfaylhwDzjtVeeS2uPFtnLc6/8Ab3MiyXerXPnPGzA54ynmkAADJXOe2Bk8zRWaglPnW52/W5OjGhJJpeve/e3fW19bXN3xaLS78X6hLa6jb3VpdXTzLdIkqoqu5PIZA3APOFPtmtvXtcsdL+Iem65YX9vq9vA9rMRAkqYMSopU+YiHnYcYzwR9K4eipjSUVFX2VipYyUnN8qTlJS66NX2183vc7We40jQE165sNXg1NdTge2gtY4pkliV5FfMu9FXgLjCs3zY6jJqprDafJ4G0OGHV7We+tpJnls0jmEiiTZjkxhDjac4buMZrlaKSpJW1ehc8dKakuRJSTVtdLtO613ul5eQUUUVueadN8P5bG21159Q1O30yFbW4jD3CSvuaSF4wAI0Y9WBOccA9+KZ4QuRpWt3MkWvW+lSRxOkV1NDJJbz5YKyOgjYlGQscMmOACBXOUVm4Xbd91b8/8zshipU4wior3W2nre7t2a7K1rPzNrxjNplxr88mkpDHasqEi2DiHzNg8wxhwGCFtxAYAgGp/h/dWdh4z0i8v7yKwtLa4SeSaVHYYU5wAiscnHHGPUiueoo5Fycl+lhfWZfWPrHKr3vbpvf7vmd3o+o6d4Y03TrmPWLK/u7DWFvfskMdwGljUqMgtEq87c8kHB9eKhnuNI0BNeubDV4NTXU4HtoLWOKZJYleRXzLvRV4C4wrN82Ooya4qio9im7tvU6VmE1FRjBK22+j1138+t1otDpbqeyv/A+nQjUYIb6wnnLWciS+ZKJDHgoQhTjac7mB471zVFFaxjynDVquq02rNJL1srL8Du9MudD1K38LXVzrMGlXGk/ubm3mgmdpUWdpVeMojKSQ5GGK8r1wc1fs/E0Vv/b9npvi5tCml1H7Zb6jA11HFcRsCGRvLTeCPlIyuOG9q81orGVFS3fft1d+x6NPMqlNLlgrqyv713aLitpdn0tqdh4WutNs/iHYX1zrCrZ2tylxNf3SSt57KwLlQqM3zHONwBI64JxXOtp8C6sLQanavb7wv28LL5OP72Cm/A/3M+1UaK1jDld0zjniOeCg4rdvr1tpvtovPzPRDqWjr8Y49YGt2raUb4XxuxFPtC7t2wr5e7dx/dxz1rNim0/RvDlv5Ws2V9eWuqC6FrFHcBpEGFBBaJV5255IOD0zxXG0VnGiopJN6W7dPkdMswlJyfIrycn105kk7a+Wl7ne+Ntcj1SSe4bxhc69Zed5tjpkr3DPBk5AkEihBtXK/IWycY4JIvy3PhyfXPEmrR+I7WCPWLafybSS2ufNhklwxSTEZUAHcuVZs8dATjzOip9guXlTfVdOtvLyNXmlR1XVlCLbaevNur2+1fq9L28gooorpPGCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPR/FX/I0ax/1+Tf8AoZrLq/rzmTXNRc9WuZCf++jVCtTEKki/1c3+5/7MKjqSL/Vzf7n/ALMKBkdFPjmaLO0Kc/3kDfzFP+1v/di/79L/AIUAQ0VN9rf+7F/36X/Co5JDK2SFB6fKoX+VADpf9XD/ALn/ALMajqSX/Vw/7n/sxr0P4AX2i6b8Rre41+WzhsEt5fnvtvlh8YH3uM9aAPRf+GdvAX/RQoP/AAIt/wD4qvFviH4dsPCfjHUNK0vUF1Wxt/L8u7VlYSbo1Y8rxwWI49K+zr/xT8OtLvZrS7vdAtrqFykkMnlBkYdQRjg14h+0/J4c+y6cuk3lnPfNcCZ4IBGDBE0KFcbVB2tw/wAxPLccYAlMpo+ebj/j3l/3T/KuQrr7j/j3l/3T/KuQpSHEKKKKkoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPRvEyhPEmrKOALuUD/vs1mVqeKf8AkZ9X/wCvyb/0M1l1qYhUkX+rm/3P/ZhUdSRf6ub/AHP/AGYUDI6KK9H+EXwltvipdyW66/Bp9zAwaWzkiJleLIy8Zzg+ntxnrQB57LaT28UMssMkcc6l4ndSBIoJUlT3GQRx3BqKvuj4peAPBs/w4TTtYlg0TTtOiCWV6cBrZgMDb3fOOV6t9cEfDU6JFPIkcgmRWIWRQQGGeDg88+9ACy/6uH/c/wDZjUdSS/6uH/c/9mNR0Adtf/Fe91S9mu7vQ/D9zdTuXkmk0xCzsepJ7muc8SeIbrxTrEupXixJPIkabYE2IqoiooCjoAqgVmUUAR3H/HvL/un+VchXX3H/AB7y/wC6f5VyFRIuIUUUVJQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAej+Kf+Rn1f8A6/Jv/QzWXWp4p/5GfV/+vyb/ANDNZdamIVJF/q5v9z/2YVHUkX+rm/3P/ZhQMaiNI6oil3Y4CqMkn0r3HRPFGnfs9eHZobaOHUfiDfxgXGfmi01OojYjq/QlR36/dGfELe4ltJ454JHhmjYOkkbFWVgcggjoQe9MZi7FmJZicknqTQB33xX+Ks/xTOh3FzCbe6s7Uw3CKf3Tybid6jtkY47YxzXAUUUASS/6uH/c/wDZjVvQdEufEmtWWl2QVru8lWGIO20FmOBk9qqS/wCrh/3P/ZjUdAHv2l/sga/daW019q9rY3o3YtVj80HHT5wwHP04ryjx78OtZ+G2pW9jrSQpPPF5yCGQONuSOv1Br7c/4U94I/6FXSv/AAFX/Cvj34+aPY6B8WtdsNNtIrGyi8jy4IECouYI2OAPUkn8aSGedXH/AB7y/wC6f5VyFdfcf8e8v+6f5VyFTIqIV6V4e8SXOk/Ciea207RZ7uDV4bWKe70OzupfLeKZ2UtJEzNllXGSSMADA4rzWvT/AAn4l/4Rr4VanFpXjpdA1y5vY7o2No17FNJEkcqGNnji2ZYspAL7cdSpGKl/BL5fmv0H9qPz/J/qSeI/htceI/GeiaNplnaaV4ivdNS51LTZZVgWC5LNlVjPKuyeW/koCQXIVQBgcvP8O7qDWI7D+1dJlC2gvLu7huvMgsU3bXWZlB+dTgFUDFiyhdxYZm+E17p2m+O7C+1bVINJs7bfI89xHNIGJUqFAiR2yd2eRjg89My+DNS0vRrrxNod9qUH9n6tYtYpqsUUrQo6yxyxyFdok2FowD8m4A52nGKNvxf56D7X8l+V2Z+peAb61utKSwubXXbbVHMdneaeXEUrqQHT96iMpUkZ3KOCD0INGueBZtJ0yG/tNU07XLZ7j7HK2mNK3kTldwjbeibsgNhk3Kdpw1dVpHifQvCA8O6NNqEWv6fBqFzeXt7p0cyokc8KQlY1mSNi6hWY5UDO0A8GsCe20PwTrOnX2n6/B4nmt76O4Q2UE0MaxI2cP50aHe2BwuQMH5jkU1a9ntf/AC/4P59xO9rre3+dv0/Ig1j4e3WlaPdX8ep6dqTWLpFqFrZPI0lizEhQ5ZAjDcCu6NnUHAJ5GY9Q8DSaZoX2+bVtPF4sENy+k/vhdJDLtMb5MYjIIdDhXJAYZHBx03xN12HXVvJX+IV74qsTOZNM0uaS7Z7UM2R5omQRrtTK/u2bJx25p2r6zo9x8OvsN9run+ILmC0t10lBb3Cahp0hZWlhaRoljeEZmAXe+DtKgZaoTbi2/L+v6v6l2XNZbf1r/X3HL2vgaSbw+upzatp9nNNbyXVtp1x5wnuYo2ZWdCIzH1SQYZwfkPHTPM16doGs6PF8Pm0/V9d0/UrI2tzJFotxb3H22xvWLCN7aVYtiqdsTMpk2sC2VLAV5jVP4mv66/1+PWylbf1/X9fM7/4OaJYarrupXF7qGmWbWGnXVzAmqW0lxG0iwuQ5jEUisqEBiGHPGAx4qnpNnqvjX4j29vps2g3GovcLHBL9ltrOxmIIVSIXjRGB4Owx7m/uk8U/4Wy6Xb32svqmuWeipLplzZxG7iuH8x5YmRceTE+ACQTnHB4zVf4aTadpHxJ0O81HV7Wx07Tr+K6kvJI5nR0jkDHaqRs+WA4yo98VT1nH0/G7/SxGqhLvf8LL9blTwl4E1TxxqF9aaa1p59pBJcyLcXMcOVQEnaGIz07DAHLFQCQ3xN4Mn8N3GmINQsNTt9ShE1teWUreSw3tGQTIqFSrIwOQB3zg5roPBA0bTPE3iFLzxNp1vayadd2kF60N20U7yxMi7QsBcAFudyr0OM1R8TJpc3hTwjBbeILG7ureKSK5gjiuVa3LytJli0QUgBgDsLcg4yOaj+X0X5v/AIBrK15ert+Gvn1Mvxvouo6Fr/2PVPsP2wW1u/8AxLvKMJRoUZCDENjHaVyy53HJy2cm14h8FyeEEE0mqabf3dtci3u9PiWbzbWUAnZIJI1VuVYEozDIPPIzc+KUul3Wt6dNpet2mswrptnayPaRTp5bw28cTZEsSEglCRjPHXB4rc+IeraNrGiQwTeIdN8R6zHeRxWus29vdRXAslRl23ZeFBIRiLaw3uMMMkBRT6XW9/1X9fjfTWdNE+36f1+VuzviB8PbrUrzU9bt30jT9mm2mpHSYAIJXiaGESTRxIgjVd7k7cqTyVUjmuY0T4c3mu2ULRajp8OpXUbzWekytJ9qu0UEkptQoudrYDupbHyg5XPY3k/hqTxHrs6eMtLa3uPD8VnFKLW9w84gjjKAG3yPmizkgDDr3yA258YRa34R0e3/AOE/vdG02DT0tNR8NrJd5nMZIzEqoYDvQJ99lw2c8UpafD/Xxf5L7/uI3+1/W3+b+7uZHwo8KPL4m8PahdXOiwx3F4iW+n60u8X6b9km1WRowB8wBkKgsCFJZSBxviSJIPEWqxRIscaXcqqiDAUBzgAdhXoWh6h4Y1ZvA2p3fiG20KfQdkF7ZXNrcSSTJHcNMskJjjZGJWQqQ7Jgp6HNcD4tNu/ifVXtLyLULWS5kkjuYFdUkVmJBAdVYde4FOfxRt/e/S33hHZ/L9b/AHGz4Q+HM3jCzt54dZ0ywM+pRaWsV55+4SyKTGxKRMoU7SM5zkHjHNVJvBs9rLp32fU9Mupbq6mt41eUwKpiYDfI06oio2eNx7EMAeKueAfFNp4etdcjvCQ0lutxYnyy+y9icGFsZwMBpOT61N441vTfGnjSCS1vI9O06RVYz3SSeXBJITNMCqKzYWWR1G1TwB1q0lzx7f1+qf3oXR3/AK/q6+5mJ4n0q607xjqem6pJaW15DeyQXMkEYS3jcOQxVY1wEBzwi9Og7V0PinwxafDbx5Y2tjqun+IfKaF2R7Z3RWKISJEmiVWBLEgDcMYDc5FUPivd6fqfxD17UdL1ODVbG/vJbuKe3jlQBXcsFIkRG3AHnjHoTWn41l0fXvHNlqlr4isPsl95DSl4bkGy2RxqRKPJ5OQf9Xv6UqL1g5aaoVTaVib4l/Da50bUPE+qxT6bHb2mqvFLpVvJiezjkkk8ksm0KFIXG1WJXjIWvOa9S8Q3Hh64T4jS2/irT7g6jerc2ES212GuV80yEDdCApw+35iPmU9sMfLaxp3UUn2X5Gkt7nWaJ8ObzXbKFotR0+HUrqN5rPSZWk+1XaKCSU2oUXO1sB3Utj5Qcrm1oXwwfX9AttXi8R6NBbPcG3uFmF1vsmEUkuZtsBAUrE2CpbJ+jY6W58YRa34R0e3/AOE/vdG02DT0tNR8NrJd5nMZIzEqoYDvQJ99lw2c8VQ8C6j4f0XTTpV/r8C2HiWKSHVikdwTp8aDfASBF87+aAx2bhhduQGJrV7yt8v681/S2IWyv8/68vx/Fcz4V8OahquparFpM+mXP2S0uZJJbpotskKRuXaKOYbmbapI2rvXg/LjIPhx4TtvG3i+x0i71OLSoJyS08iO2cDJVdit8xAPJGB+h1vh3Ho+jeLtQN/4m061s47G8tYr1obto7hpraSFSgWAuAGcE71XgHqeKzfh5qlj4b+IGmXd7dothBOyvdojsgUqy78bd23nP3c47Z4pdV6fqxvZnP6naRWF/NbwXsGoxRthbq2WQRyD1USKrY+qik03TbnWNQt7KziM91cOI44wQNzHpyeB9TwKfq1lDp2oS29vqFtqkKY23dosixycZ4EiI/HTlR0rU8BaxY6F4u0681NJH05WaO58oZcRujIzKD1IDEj3FEdbBLS5b1P4eXVraWlxp2paf4gSe7WwYaW0jGK5YZWI70TcW5wyblO04ak1X4fzWGk3d9aaxpms/YSov4NOeVns9zbQWLRqjru+XdEzrkjnDAnT02bQvht4t0XWLHXYPFEllqUVyPsME0KCFGyQ4mRD5jcYC5UYOWOauxX+g+Bx4hvNM12019dVh+y21jDDcxyQoZ45d0/mRqnCx7cIz/MR1AzTVnbX+tPz1/pam34frf7tC34W8HjR/DfjGO+n0O8vE0hpZtPkQPfWEgdNhDOgCthiGETsV6OFIxXLaJ8ObzXbKFotR0+HUrqN5rPSZWk+1XaKCSU2oUXO1sB3Utj5QcrnuJ7nwjNrvjTWYPGFlDF4gs7j7LZTWd351vJK6SmOYiEoNpDLuRnBODwCSK1z4wi1vwjo9v8A8J/e6NpsGnpaaj4bWS7zOYyRmJVQwHegT77Lhs54qJNvXrZfL4v+B3/ya008389I/wDB7bHkldx8KXsZdV1SyvNHsdSM+lX7x3F2rs9s0dnM4aMBgmcheWVsYBXaea4g4yccDtmu0+FMml2mu3d1quuWeiwiwu7ZDdxXEhkea2liXHkxPwGdSc446ZPFXvGS8n+QtmjiqKmu4UtrqaKO4juo0cqs8IYJIAeGUMA2D15APqBUNIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD0fxT/AMjPq/8A1+Tf+hmsutTxT/yM+r/9fk3/AKGay61MQqSL/Vzf7n/swqOpIv8AVzf7n/swoGR0UUUAFFFFAEkv+rh/3P8A2Y1HUkv+rh/3P/ZjUdAH1TD+2TpRhTzfDl4Jdo3hJ0K574yOlfP3xO8Zr8QfHOqa+lsbNLtk2ws24qEjVBk+p25/GuXooAjuP+PeX/dP8q5CuvuP+PeX/dP8q5CokXEKKKKkoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPR/FP/ACM+r/8AX5N/6Gay61PFP/Iz6v8A9fk3/oZrLrUxCpIv9XN/uf8AswqOpIv9XN/uf+zCgZHRRRQAUUUUASS/6uH/AHP/AGY1HUkv+rh/3P8A2Y1HQAUUUUAR3H/HvL/un+VchXX3H/HvL/un+VchUSLiFFFFSUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHo/in/kZ9X/6/Jv8A0M1l1qeKf+Rn1f8A6/Jv/QzWXWpiFSRf6ub/AHP/AGYVHUkX+rm/3P8A2YUDI6KKKACiiigCSX/Vw/7n/sxqOpJf9XD/ALn/ALMajoAKKKKAI7j/AI95f90/yrkK6+4/495f90/yrkKiRcQoooqSgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q==" alt="" width="699" height="385" />

而错误分为两种(语法错误和逻辑错误):

1,语法错误(这种错误,根本过不了python解释器的语法检测,必须在程序执行前就改正)

#语法错误示范一
if
#语法错误示范二
def test:
pass
#语法错误示范三
class Foo
pass
#语法错误示范四
print(haha

  

2,逻辑错误

#TypeError:int类型不可迭代
for i in 3:
pass
#ValueError
num=input(">>: ") #输入hello
int(num) #NameError
aaa #IndexError
l=['egon','aa']
l[3] #KeyError
dic={'name':'egon'}
dic['age'] #AttributeError
class Foo:pass
Foo.x #ZeroDivisionError:无法完成计算
res1=1/0
res2=1+'str'

 

二:异常的种类有哪些?

  在python中不同的异常可以用不同的类型(python中统一了类与类别,类型即类)取标识,一个异常标识一种错误。

1,常见语法错误

AttributeError 试图访问一个对象没有的属性,比如foo.x,但是foo没有属性x

IOError 输入/输出异常;基本上是无法打开文件

ImportError 无法引入模块或包;基本上是路径问题或名称错误

IndentationError 语法错误(的子类) ;代码没有正确对齐

IndexError 下标索引超出序列边界,比如当x只有三个元素,却试图访问x[5]

KeyError 试图访问字典里不存在的键

KeyboardInterrupt Ctrl+C被按下

NameError 使用一个还未被赋予对象的变量

SyntaxError Python代码非法,代码不能编译(个人认为这是语法错误,写错了)

TypeError 传入对象类型与要求的不符合

UnboundLocalError 试图访问一个还未被设置的局部变量,基本上是由于另有一
个同名的全局变量,导致你以为正在访问它 ValueError 传入一个调用者不期望的值,即使值的类型是正确的

  

2,更多错误

ArithmeticError
AssertionError
AttributeError
BaseException
BufferError
BytesWarning
DeprecationWarning
EnvironmentError
EOFError
Exception
FloatingPointError
FutureWarning
GeneratorExit
ImportError
ImportWarning
IndentationError
IndexError
IOError
KeyboardInterrupt
KeyError
LookupError
MemoryError
NameError
NotImplementedError
OSError
OverflowError
PendingDeprecationWarning
ReferenceError
RuntimeError
RuntimeWarning
StandardError
StopIteration
SyntaxError
SyntaxWarning
SystemError
SystemExit
TabError
TypeError
UnboundLocalError
UnicodeDecodeError
UnicodeEncodeError
UnicodeError
UnicodeTranslateError
UnicodeWarning
UserWarning
ValueError
Warning
ZeroDivisionError

  

3,python所有标准异常类

异常名称 描述
BaseException 所有异常的基类
SystemExit 解释器请求退出
KeyboardInterrupt 用户中断执行(通常是输入^C)
Exception 常规错误的基类
StopIteration 迭代器没有更多的值
GeneratorExit 生成器(generator)发生异常来通知退出
SystemExit Python 解释器请求退出
StandardError 所有的内建标准异常的基类
ArithmeticError 所有数值计算错误的基类
FloatingPointError 浮点计算错误
OverflowError 数值运算超出最大限制
ZeroDivisionError 除(或取模)零 (所有数据类型)
AssertionError 断言语句失败
AttributeError 对象没有这个属性
EOFError 没有内建输入,到达EOF 标记
EnvironmentError 操作系统错误的基类
IOError 输入/输出操作失败
OSError 操作系统错误
WindowsError 系统调用失败
ImportError 导入模块/对象失败
KeyboardInterrupt 用户中断执行(通常是输入^C)
LookupError 无效数据查询的基类
IndexError 序列中没有没有此索引(index)
KeyError 映射中没有这个键
MemoryError 内存溢出错误(对于Python 解释器不是致命的)
NameError 未声明/初始化对象 (没有属性)
UnboundLocalError 访问未初始化的本地变量
ReferenceError 弱引用(Weak reference)试图访问已经垃圾回收了的对象
RuntimeError 一般的运行时错误
NotImplementedError 尚未实现的方法
SyntaxError Python 语法错误
IndentationError 缩进错误
TabError Tab 和空格混用
SystemError 一般的解释器系统错误
TypeError 对类型无效的操作
ValueError 传入无效的参数
UnicodeError Unicode 相关的错误
UnicodeDecodeError Unicode 解码时的错误
UnicodeEncodeError Unicode 编码时错误
UnicodeTranslateError Unicode 转换时错误
Warning 警告的基类
DeprecationWarning 关于被弃用的特征的警告
FutureWarning 关于构造将来语义会有改变的警告
OverflowWarning 旧的关于自动提升为长整型(long)的警告
PendingDeprecationWarning 关于特性将会被废弃的警告
RuntimeWarning 可疑的运行时行为(runtime behavior)的警告
SyntaxWarning 可疑的语法的警告
UserWarning 用户代码生成的警告

三:异常处理的定义

  python解释器检测到错误,触发异常(也允许程序员自己触发异常)

  程序员编写特定的代码,专门用来捕捉这个异常(这段代码与程序逻辑无关,与异常处理有关)

  如果捕捉成功则进入另外一个处理分支,执行你为其定制的逻辑,使程序不会崩溃,这就是异常处理

四:异常处理的用法

  为了保证程序的健壮性与容错性,即在遇到错误时候程序不会崩溃,我们需要对异常进行处理,

1,如果错误发生的条件是可预知的,我们需要用if进行处理,在错误发生之前进行预防

AGE=10
while True:
age=input('>>: ').strip()
if age.isdigit(): #只有在age为字符串形式的整数时,下列代码才不会出错,该条件是可预知的
age=int(age)
if age == AGE:
print('you got it')
break

  

2,如果错误发生的条件是不可预知的,则需要用到try..except:在错误发生之后进行处理

#基本语法为
try:
被检测的代码块
except 异常类型:
try中一旦检测到异常,就执行这个位置的逻辑
#举例
try:
f=open('a.txt')
g=(line.strip() for line in f)
print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(next(g))
except StopIteration:
f.close()

  

五,try...except...的详细用法

  我们把可能发生错误的语句放在try模块里,用except来处理异常。except可以处理一个专门的异常,也可以处理一组圆括号中的异常,如果except后没有指定异常,则默认处理所有的异常。每一个try,都必须至少有一个except

1,异常类只能来处理指定的异常情况,如果非指定异常则无法处理

s1 = 'hello'
try:
int(s1)
except IndexError as e: # 未捕获到异常,程序直接报错
print e

  

2,多分支

s1 = 'hello'
try:
int(s1)
except IndexError as e:
print(e)
except KeyError as e:
print(e)
except ValueError as e:
print(e)

  

3,万能异常Exception

s1 = 'hello'
try:
int(s1)
except Exception as e:
print(e)

  

4,多分支+Exception

s1 = 'hello'
try:
int(s1)
except IndexError as e:
print(e)
except KeyError as e:
print(e)
except ValueError as e:
print(e)
except Exception as e:
print(e)

  

5,异常的其他机构(try...finally语法)

  try...finally语句无论是否发生异常都将会执行最后的代码。语法如下:

try:
<语句>
finally:
<语句> #退出try时总会执行
raise

 示例:

s1 = 'hello'
try:
int(s1)
except IndexError as e:
print(e)
except KeyError as e:
print(e)
except ValueError as e:
print(e)
#except Exception as e:
# print(e)
else:
print('try内代码块没有异常则执行我')
finally:
print('无论异常与否,都会执行该模块,通常是进行清理工作')

  

6,主动触发异常(raise语句)

  我们可以使用raise语句自己触发异常,raise语法格式如下:

raise [Exception [, args [, traceback]]]

  语句中Exception是异常的类型(例如,NameError)参数是一个异常参数值。该参数是可选的,如果不提供,异常的参数是"None"。

最后一个参数是可选的(在实践中很少使用),如果存在,是跟踪异常对象。

示例:

一个异常可以是一个字符串,类或对象。 Python的内核提供的异常,大多数都是实例化的类,这是一个类的实例的参数。

定义一个异常非常简单,如下所示:

def functionName( level ):
if level < 1:
raise Exception("Invalid level!", level)
# 触发异常后,后面的代码就不会再执行

  

try:
raise TypeError('类型错误')
except Exception as e:
print(e)

  

7,自定义异常

  通过创建一个新的异常类,程序可以命名它们自己的异常。异常应该是典型的继承自Exception类,通过直接或间接的方式。

  以下为与BaseException相关的实例,实例中创建了一个类,基类为BaseException,用于在异常触发时输出更多的信息。

  在try语句块中,用户自定义的异常后执行except块语句,变量 e 是用于创建Networkerror类的实例。

class Networkerror(BaseException):
def __init__(self,msg):
self.msg=msg
def __str__(self):
return self.msg try:
raise Networkerror('类型错误')
except Networkerror as e:
print(e)

  

8,断言:assert条件

assert 1 == 1
assert 1 == 2

  

9,总结try...except

1,把错误处理和真正的工作分开来

2,代码更易组织,更清晰,复杂的工作任务更容易实现

3,毫无疑问,更安全了,不至于由于一些小的疏忽而使程序意外崩溃了

  

六:什么时候用异常处理?

  有的同学会这么想,学完了异常处理后,好强大,我要为我的每一段程序都加上try...except,干毛线去思考它会不会有逻辑错误啊,这样就很好啊,多省脑细胞,这样其实并不好,为什么呢?

  首先try...except是你附加给你的程序的一种异常处理的逻辑,与你的主要的工作是没有关系的,这种东西加的多了,会导致你的代码可读性变差

  然后异常处理本就不是你的擦屁股纸,只有在错误发生的条件无法预知的情况下,才应该加上try...except

七,异常问题的解决方法

7.1 TabError的解决方法

  问题:Python文件运行时报错如下:

TabError: inconsistent use of tabs and spaces in indentation

  原因:说明Python文件中混有Tab和Space用作格式缩进。这通常是使用外部编辑器编辑Python文件时,自动采用Tab进行格式缩进。

  解决:将Tab转换成4个Space(通常)或者用Python编辑器(如pyDev)格式化。

7.2 EOFError的解决方法

  使用pickle.load(f) 加载 pickle 文件时,报错:

EOFError: Ran out of input

  可能原因:文件为空

  解决方法:加载非空文件,或者加载前判断文件是否为空。

此文参考:https://www.luffycity.com/python-book/di-5-zhang-mian-xiang-dui-xiang-bian-cheng-she-ji-yu-kai-fa/514-yi-chang-chu-li.html
主要是自己复习和巩固知识点。

python 一篇搞定所有的异常处理的更多相关文章

  1. 一篇搞定RSA加密与SHA签名|与Java完全同步

    基础知识 什么是RSA?答:RSA是一种非对称加密算法,常用来对传输数据进行加密,配合上数字摘要算法,也可以进行文字签名. RSA加密中padding?答:padding即填充方式,由于RSA加密算法 ...

  2. 2021升级版微服务教程6—Ribbon使用+原理+整合Nacos权重+实战优化 一篇搞定

    2021升级版SpringCloud教程从入门到实战精通「H版&alibaba&链路追踪&日志&事务&锁」 教程全目录「含视频」:https://gitee.c ...

  3. 忘带U盘了??别急!一行python代码即可搞定文件传输

    近日发现了python一个很有趣的功能,今天在这里给大伙儿做一下分享 需求前提 1.想要拷贝电脑的文件到另一台电脑但是又没有U盘2.手机上想获取到存储在电脑的文件3.忘带U盘- 您也太丢三落四了吧,但 ...

  4. 【python3】Python十行代码搞定文字转语音

    前言本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理.作者:万能搜吧 都是copy的百度SDK文档,简单说说怎么用. 1.没安装Py ...

  5. 文字转语音?我只用十行Python代码就搞定了!

    详细使用教程 1.没安装Python的小伙伴需要先安装一下 2.win+r输入cmd打开命令行,输入:pip install baidu-aip,如下安装百度AI的模块. 3.新建文本文档,copy如 ...

  6. 一篇搞定Python正则表达式

    1. 正则表达式语法 1.1 字符与字符类 1 特殊字符:\.^$?+*{}[]()| 以上特殊字符要想使用字面值,必须使用\进行转义 2 字符类    1. 包含在[]中的一个或者多个字符被称为字符 ...

  7. Python入门系列(十一)一篇搞定python操作MySQL数据库

    开始 安装MySQL驱动 $ python -m pip install mysql-connector-python 测试MySQL连接器 import mysql.connector 测试MySQ ...

  8. 一篇搞定微信分享和line分享

    前言 在h5的页面开发中,分享是不可或缺的一部分,对于一些传播性比较强的页面,活动页之类的,分享功能极为重要.例如,京东等电商年末时会有一系列的总结h5在微信中传播,就不得不提到微信的分享机制. 微信 ...

  9. 一篇搞定MongoDB

    MongoDB最基础的东西,我这边就不多说了,这提供罗兄三篇给大家热身 MongoDB初始 MongoDB逻辑与物理存储结构 MongoDB的基础操作 最后对上述内容和关系型数据做个对比 非关系型数据 ...

随机推荐

  1. PKUWC2018游记

    PKUWC2018游记 Day -inf 从去年的12月底开始停课,到现在也有整整一个月的时间了. 前两周考的是OI赛制,后来就变成了IOI赛制. 整体上考的很炸,虐场的次数远少于被虐的次数. 关于去 ...

  2. emacs配置

    原配置 (global-set-key [f9] 'compile-file) (global-set-key [f10] 'gud-gdb) (global-set-key (kbd "C ...

  3. [BZOJ1058][ZJOJ2007]报表统计

    BZOJ Luogu 题目描述 Q的妈妈是一个出纳,经常需要做一些统计报表的工作.今天是妈妈的生日,小Q希望可以帮妈妈分担一些工作,作为她的生日礼物之一. 经过仔细观察,小Q发现统计一张报表实际上是维 ...

  4. data数据不一致的问题

    经常会遇到that.data能打印出来(能访问到),而that.data.xxx不能打印(为空)的情况.特别是在调用了云方法,然后setData的时候,为什么会出现这样的情况不明. 解决方法,将需要用 ...

  5. Python + request + unittest实现接口测试框架

    1.为什么要写代码实现接口自动化 大家知道很多接口测试工具可以实现对接口的测试,如postman.jmeter.fiddler等等,而且使用方便,那么为什么还要写代码实现接口自动化呢?工具虽然方便,但 ...

  6. puppet客户端拉取服务端的资源时报错

    2017-11-01   16:21:47 客户端再拉取服务端的配置的资源时,出现一下报错: 造成原因:服务配置的资源不可用: 解决办法:将服务端不正确的资源配置删除: master:   cd   ...

  7. linux下Tomcat 安装后执行startup.sh,出现– Cannot find …bin/catalina.sh

    linux下Tomcat 安装后执行startup.sh,出现– Cannot find …bin/catalina.sh 是因为权限不够,执行以下命令就可以: chmod +x startup.sh ...

  8. 一步步教你开发、部署第一个去中心化应用(Dapp) - 宠物商店

    今天我们来编写一个完整的去中心化(区块链)应用(Dapps), 本文可以和编写智能合约结合起来看. 写在前面 阅读本文前,你应该对以太坊.智能合约有所了解,如果你还不了解,建议你先看以太坊是什么除此之 ...

  9. VMware静态地址上网

    虚拟机通过dhcp获取ip,当系统重启时可能导致ip变更,出现不必要的麻烦,以下是通过nat模式设置虚拟机静态ip同时能够上网的方式. 编辑VMware,依次点击“编辑”--“虚拟网络编辑器” 注:为 ...

  10. 兄弟连PHP培训教你提升效率的20个要点

    兄弟连PHP培训教你提升效率的20个要点 用单引号代替双引号来包含字符串,这样做会更快一些.因为PHP会在双引号包围的字符串中搜寻变量,单引号则 不会,注意:只有echo能这么做,它是一种可以把多个字 ...