多进程IPC与Python支持
多进程IPC与Python支持
linux下进程间通信的几种主要手段简介:
管道(Pipe)及有名管道(named pipe):管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信;
信号(Signal):信号是比较复杂的通信方式,用于通知接受进程有某种事件发生,除了用于进程间通信外,进程还可以发送信号给进程本身;linux除了支持Unix早期信号语义函数sigal外,还支持语义符合Posix.1标准的信号函数sigaction(实际上,该函数是基于BSD的,BSD为了实现可靠信号机制,又能够统一对外接口,用sigaction函数重新实现了signal函数);
报文(Message)队列(消息队列):消息队列是消息的链接表,包括Posix消息队列system V消息队列。有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺点。
共享内存:使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。是针对其他通信机制运行效率较低而设计的。往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥。
信号量(semaphore):主要作为进程间以及同一进程不同线程之间的同步手段。
套接口(Socket):更为一般的进程间通信机制,可用于不同机器之间的进程间通信。起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix系统上:Linux和System V的变种都支持套接字。
python 原生支持的有:1, 2, 6. 信号这个比较简单, 一种注册监听机制.本文不涉及
管道是可以通过 (mutiprocessing.Pipe) 获得, 由c写的
套接字这个通过 AF_UNIX协议 就可以完成啦, 和网络编程类似的~
其实仔细想想还有第三种即, 利用文件, 生产者写到文件中, 消费者从文件中读.(简单化成一个生产者, 一个消费者, 否者竞争关系有点复杂.), 当然我们知道文件写入肯定很慢, 但是有多慢还是要测试一下的.
工具函数:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#
# Author : zhangxiaolin
# E-mail : petelin1120@gmail.com
# Date : 17/8/17 12:08
# Desc : ...
# through pipe 269667.7903995848 KB/s data_size = 8 * 1024 # KB def gen_data(size):
onekb = "a" * 1024
return (onekb * size).encode('ascii')
管道:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#
# Author : zhangxiaolin
# E-mail : petelin1120@gmail.com
# Date : 17/8/17 12:08
# Desc : ...
import multiprocessing from mutiprocesscomunicate import gen_data, data_size def send_data_task(pipe_out):
for i in range(data_size):
pipe_out.send(gen_data(1))
# end EOF
pipe_out.send("")
print('send done.') def get_data_task(pipe_in):
while True:
data = pipe_in.recv()
if not data:
break
print("recv done.") if __name__ == '__main__':
pipe_in, pipe_out = multiprocessing.Pipe(False)
p = multiprocessing.Process(target=send_data_task, args=(pipe_out,), kwargs=())
p1 = multiprocessing.Process(target=get_data_task, args=(pipe_in,), kwargs=()) p.daemon = True
p1.daemon = True
import time start_time = time.time()
p1.start()
p.start()
p.join()
p1.join()
print('through pipe', data_size / (time.time() - start_time), 'KB/s')
注意这个地方 Pipe(True)默认为双工的, 然而标准的是单工的, 单工缓冲区大小在OSX上有64KB, 设置缓存区是为了协调流入流出速率, 否者写的太快, 没人取走也是浪费. 结果: through pipe 99354.71358973449 KB/s
file
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#
import os
from mutiprocesscomunicate import gen_data, data_size def send_data_task(file_name):
# 是否同步写入磁盘, 如果同步写进去, 慢的一 b, 牛逼的是, 不同步写进去, 也可以读.操作系统厉害了.
# os.sync()
with open(file_name, 'wb+') as fd:
for i in range(data_size):
fd.write(gen_data(1))
fd.write('\n'.encode('ascii'))
# end EOF
fd.write('EOF'.encode('ascii'))
print('send done.') def get_data_task(file_name):
offset = 0
fd = open(file_name, 'r+')
i = 0
while True:
data = fd.read(1024)
offset += len(data)
if 'EOF' in data:
fd.truncate()
break
if not data:
fd.close()
fd = None
fd = open(file_name, 'r+')
fd.seek(offset)
continue
print("recv done.") if __name__ == '__main__':
import multiprocessing pipe_out = pipe_in = 'throught_file'
p = multiprocessing.Process(target=send_data_task, args=(pipe_out,), kwargs=())
p1 = multiprocessing.Process(target=get_data_task, args=(pipe_in,), kwargs=()) p.daemon = True
p1.daemon = True
import time start_time = time.time()
p1.start()
import time time.sleep(0.5)
p.start()
p.join()
p1.join()
import os
print('through file', data_size / (time.time() - start_time), 'KB/s')
open(pipe_in, 'w+').truncate()
有两个点, 一个是, 打开文件之后, 如果有人在写入, 需要重新打开才能发现新内容, 另外需要设置offset,只读取新内容.
!!!重点, 测试的时候这个速度有 through file 110403.02025891568 KB/s这么多, 甚至比管道还要高一点, 这是怎么回事呢?
quite often file data is first written into the page cache (which is in RAM) by the OS kernel.
并没有被写入文件, 而是被写到内存中了, 随后(不会通知你)被操作系统调度写入文件.操作系统比较厉害的是, 即使没有写到文件中, 读写仍然像写到文件中一样.
如果设置了 os.sync(), 所有写操作立即执行, 会发现慢的…类似于卡死.
本地socket
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#
# Author : zhangxiaolin
# E-mail : petelin1120@gmail.com
# Date : 17/8/17 12:08
# Desc : ...
import multiprocessing
import os
import socket from mutiprocesscomunicate import gen_data, data_size minissdpdSocket = '/tmp/m.sock' # The socket for talking to minissdpd def send_data_task():
with socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) as server:
server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) try:
os.remove(minissdpdSocket)
except OSError:
pass server.bind(minissdpdSocket) server.listen(1) conn, _ = server.accept()
with conn:
for i in range(data_size):
conn.send(gen_data(1))
conn.shutdown(socket.SHUT_WR)
print('send done.') def get_data_task():
with socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) as client:
client.connect(minissdpdSocket)
client.shutdown(socket.SHUT_WR)
while True:
data = client.recv(1024)
if not data:
break
print("recv done.") if __name__ == '__main__':
p = multiprocessing.Process(target=send_data_task, args=(), kwargs=())
p1 = multiprocessing.Process(target=get_data_task, args=(), kwargs=()) p.daemon = True
p1.daemon = True
import time start_time = time.time()
p.start() p1.start()
p.join()
p1.join()
print('through pipe', data_size / (time.time() - start_time), 'KB/s')
本地socket, 会走传输层也就是被tcp或者udp封装一下,到网络层,网络层自己有路由表, 发现是本机, 则走本地回环接口, 不经过物理网卡, 发到接受队列中去.
这个速度不稳定, 最快有through socket 261834.36615940317 KB/s
参考
多进程IPC与Python支持的更多相关文章
- Linux下安装OpenCV+Python支持
以下说明在Linux下Python和OpenCV结合安装的过程,Python要使用OpenCV模块,则必须导入OpenCV提供的包,所以要提供Python支持,首先在安装OpenCV前安装必要的组件, ...
- 【转】Windows下使用VS2008编译OpenCV 2.1 添加Intel TBB和Python支持
Windows下使用VS2008编译OpenCV2.1 添加Intel TBB和Python支持 步骤: 1.仔细阅读OpenCV官网上的InstallGuide:http://opencv.will ...
- python面试题之Python支持什么数据类型?
所属网站分类: 面试经典 > python 作者:外星人入侵 链接:http://www.pythonheidong.com/blog/article/67/ 来源:python黑洞网,专注py ...
- 开启VIM的Python支持
开启VIM的Python支持 2015年01月03日 02:57:58 forlong401 阅读数:16294更多 个人分类: VIPython http://www.tuicool.com/a ...
- LD_PRELOAD的妙用,让python支持自己编译的Sqlite
LD_PRELOAD的妙用,让python支持自己编译的Sqlite LD_PRELOAD=/usr/local/sqlite/lib/libsqlite3.so.0 python3 -c " ...
- BloomFilter&python支持
BloomFilter&python支持 BloomFilter 布隆过滤器是一种概率空间高效的数据结构.它与hashmap非常相似,用于检索一个元素是否在一个集合中.它在检索元素是否存在时, ...
- Vim 8.0 版本安装方法及添加Python支持
利用Git安装 最简单也是最有效的方法 1. 获取Vim仓库: git clone https://github.com/vim/vim.git 2. 升级到最新的版本: cd vim git pul ...
- 卧槽,好强大的魔法,竟能让Python支持方法重载
1. 你真的了解方法重载吗? 方法重载是面向对象中一个非常重要的概念,在类中包含了成员方法和构造方法.如果类中存在多个同名,且参数(个数和类型)不同的成员方法或构造方法,那么这些成员方法或构造方法就被 ...
- 多线程&多进程解析:Python、os、sys、Queue、multiprocessing、threading
当涉及到操作系统的时候,免不了要使用os模块,有时还要用到sys模块. 设计到并行程序,一般开单独的进程,而不是线程,原因是python解释器的全局解释器锁GIL(global interpreter ...
随机推荐
- 理解WebKit和Chromium: 网页渲染的基本过程
转载请注明原文地址:http://blog.csdn.net/milado_nju ## 概述 前面介绍了一些渲染引擎的功能,包括网络,资源加载,DOM树,RenderObject树等等,但是,给人以 ...
- SpriteBuilder中节点的%位置移动
在SpriteBuilder中可以将一个节点的位置设为%形式,这意味着在不同的屏幕尺寸中,该节点会定位在相对同一个位置. 比如x和y分别为 50%和50%的位置,在各种屏幕中都会定位到屏幕的中心. 但 ...
- Leetcode_80_Remove Duplicates from Sorted Array II
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/43835055 Follow up for "Re ...
- ITU-R BT.1788建议书 对多媒体应用中视频质量的主观评估方法
ITU-R BT.1788建议书 对多媒体应用中视频质量的主观评估方法 (ITU‑R 102/6号研究课题) (2007年) 范围 数字广播系统允许提供多媒体和数据广播应用,包括视频.音频.静态图像. ...
- C++中重载、覆盖与隐藏的区别(转)
本文摘自林锐博士的<高质量C++/C编程指南>. 成员函数的重载.覆盖(override)与隐藏很容易混淆,C++程序员必须要搞清楚概念,否则错误将防不胜防. 1.重载与覆盖 成员函数被重 ...
- 【Android 应用开发】BluetoothServerSocket详解
一. BluetoorhServerSocket简介 1. 继承关系 public final class BluetoothServerSocket extends Object implement ...
- windows下ruby中显示中文的3种方法
A: 1将x.rb编码为ascii格式 2 在x.rb开头加上 #code:gbk或者 #coding:gbk B: 1 将x.rb编码为utf-8格式 2 在x.rb开头加上 #code:utf-8 ...
- break和continue的简单介绍
1.break break 用于完全结束一个循环,跳出循环体!不管是哪种循环,如果在程序中遇到Break,系统将完全结束该循环,开始执行循环之后的代码: public class TestBreak ...
- 进程间通信——IPC之共享内存
共享内存是三个IPC机制中的一个.它允许两个不相关的进程访问同一个逻辑内存.共享内存是在两个正在进行的进程之间传递数据的一种非常有效的方式. 大多数的共享内存的实现,都把由不同进程之间共享 ...
- FFPLAY的原理(六)
显示视频 这就是我们的视频线程.现在我们看过了几乎所有的线程除了一个--记得我们调用schedule_refresh()函数吗?让我们看一下实际中是如何做的: static void schedule ...