R语言画全基因组关联分析中的曼哈顿图(manhattan plot)
1、在linux中安装好R
2、准备好画曼哈顿图的R脚本即manhattan.r,manhattan.r内容如下:
#!/usr/bin/Rscript #example : Rscript plot_manhatom.r XXX.assoc XXX.pdf argv <- commandArgs() #define the function to plot the manhatton and quantitle-quantitle plot plot_manhatton<-function(site_file,save_file){ read.table(site_file,header=T)->data data<-data[which(data[,5]=="ADD"),] logp=-log10(data[,9]) #value chr=data[,1] #chr position<-data[,3] #position # xaxis=0 sig=numeric() lab=numeric() flogp=numeric(); the_col=c("darkblue","gray"); #chr class whole_col=c() xlabel=numeric(); length_add=0 label=numeric(); for(i in 1:22){ position[chr==i]->chr_pos chr_pos<-chr_pos-chr_pos[1]+17000000 chr_num=length(chr_pos) cat("For chrosome",i,",Num of SNPs:",chr_num,"\n") if(length(chr_pos)==0){ next } flogp=c(flogp,logp[chr==i]) label=c(label,i) whole_col=c(whole_col,rep(the_col[i%%2+1],chr_num)) chr_pos=length_add+chr_pos xlabel=c(xlabel,chr_pos) length_add=sort(chr_pos,decreasing=T)[1] lab=c(lab,(chr_pos[1]+length_add)/2) } png(save_file,height=500,width=600) par(mar=c(5,6,4,2)) plot(xlabel,flogp,col=whole_col,axes=F,xlab="",ylab="",ylim=c(0,12),pch=20,cex=0.5,cex.lab=1.2,cex.axis=1.4)#ylim=c(0,6) significance=-log10(0.05/length(data[,1])) sig_pos<-xlabel[which(flogp>significance)] for(i in 1:length(sig_pos)){ sig<-c(sig,which(xlabel>sig_pos[i]-60000 & xlabel<sig_pos[i]+60000)) } sig<-unique(sig) cat("significant signal:",sig[10:20],"\n") points(xlabel[sig],flogp[sig],col="red",pch=20,cex=0.5) title(xlab="Chromosome",ylab=expression(-log[10]*(p)),cex.lab=1.4) # title(xlab="Chromosome",ylab="Score",cex.lab=1.8) # title("GWAS scan for Hair curl", cex.main=2.5) # yaxis=seq(0,1,by=0.1) # axis(2,yaxis,yaxis,las=1,cex.axis=1.5,line=-2) axis(2,las=2,cex.axis=1.4) #las can change the directory of the axis character #las=0 always parallel to the axis #las=2 always horizontal for(i in 1:22){ mtext(label[i],side=1,at=lab[i],las=0,font=1,cex=0.8) #cex magnified relative to the to the default } # mtext("X",side=1,at=x[23],las=0,font=1,cex=1.4) # mtext("Y",side=1,at=x[24],las=0,font=1,cex=1.4) # axis(1,x,as.character(label),tick=TRUE,font=1) par(lty=2) abline(h=significance,cex=1.5,col="red") #plot the QQ plot # par(fig=c(0.58,0.92,0.43,0.95),new=TRUE) # observed <- sort(data[,12]) # logp=-log10(observed) # expected <- c(1:length(observed)) # lexp <- -(log10(expected / (length(expected)+1))) # plot(x=lexp,y=logp,pch=19,cex=0.6, xlab="Expected (-logP)", ylab="Observed (-logP)",cex.lab=1.2,cex.axis=1.2) # abline(0,1,col="red",lwd=2,lty=1) dev.off() } site_file<-argv[6];print(site_file) save_file<-argv[7];print(save_file) plot_manhatton(site_file,save_file) #round(x,digits=3) keep the length of the digit
3、准备好plink跑完后的.assoc.linear文件,比如mydata.assoc.linear
4、在linux中输入以下一个命令:
其中,mydata.png即为我们想要的曼哈顿图(manhattan plot)
Rscript manhattan.r mydata.assoc.linear mydata.png
R语言画全基因组关联分析中的曼哈顿图(manhattan plot)的更多相关文章
- 全基因组关联分析(Genome-Wide Association Study,GWAS)流程
全基因组关联分析流程: 一.准备plink文件 1.准备PED文件 PED文件有六列,六列内容如下: Family ID Individual ID Paternal ID Maternal ID S ...
- 全基因组关联分析(GWAS)的计算原理
前言 关于全基因组关联分析(GWAS)原理的资料,网上有很多. 这也是我写了这么多GWAS的软件教程,却从来没有写过GWAS计算原理的原因. 恰巧之前微博上某位小可爱提问能否写一下GWAS的计算原理. ...
- GWAS 全基因组关联分析 | summary statistic 概括统计 | meta-analysis 综合分析
有很多概念需要明确区分: 人有23对染色体,其中22对常染色体autosome,另外一对为性染色体sex chromosome,XX为女,XY为男. 染色体区带命名:在标示一特定的带时需要包括4项:① ...
- 【GWAS文献解读】疟原虫青蒿素抗药性的全基因组关联分析
英文名:Genetic architecture of artemisinin-resistant Plasmodium falciparum 中文名:疟原虫青蒿素抗药性的全基因组关联分析 期刊:Na ...
- GWAS | 全基因组关联分析 | Linkage disequilibrium (LD)连锁不平衡 | 曼哈顿图 Manhattan_plot | QQ_plot | haplotype phasing
现在GWAS已经属于比较古老的技术了,主要是碰到严重的瓶颈了,单纯的snp与表现的关联已经不够,需要具体的生物学解释,这些snp是如何具体导致疾病的发生的. 而且,大多数病找到的都不是个别显著的snp ...
- 全基因组关联分析(GWAS):为何我的QQ图那么飘
前段时间有位小可爱问我,为什么她的QQ图特别飘,如果你不理解怎样算飘,请看下图: 理想的QQ图应该是这样的: 我当时的第一反应是:1)群体分层造成的:2)表型分布有问题.因此让她检查一下数据的群体分层 ...
- 一行命令学会全基因组关联分析(GWAS)的meta分析
为什么需要做meta分析 群体分层是GWAS研究中一个比较常见的假阳性来源. 也就是说,如果数据存在群体分层,却不加以控制,那么很容易得到一堆假阳性位点. 当群体出现分层时,常规手段就是将分层的群体独 ...
- 全基因组关联分析(GWAS)扫不出信号怎么办(文献解读)
假如你的GWAS结果出现如下图的时候,怎么办呢?GWAS没有如预期般的扫出完美的显著信号,也就没法继续发挥后续研究的套路了. 最近,nature发表了一篇文献“Common genetic varia ...
- 全基因组关联分析学习资料(GWAS tutorial)
前言 很多人问我有没有关于全基因组关联分析(GWAS)原理的书籍或者文章推荐. 其实我个人觉得,做这个分析,先从跑流程开始,再去看原理. 为什么这么说呢,因为对于初学者来说,跑流程就像一个大黑洞,学习 ...
随机推荐
- 查询oracle连接数 对应的 应用程序
select b.MACHINE, b.PROGRAM , count(*) from v$process a, v$session b where a.ADDR = b.PADDR and b ...
- 1不等于1?numeric、decimal、float 和 real 数据类型的区别
大家有没有在SQL中遇见1不等于1(1<>1)的情形!?下面会有一个例子演示这个情形. 先简单介绍一下标题中的四种数值数据类型. 在T-SQL中,numeric和decimal是精确数值数 ...
- 扩展easyui.datagrid,添加数据loading遮罩效果代码 --来自网摘收集
//jquery.datagrid 扩展 (function (){ $.extend($.fn.datagrid.methods, { //显示遮罩 loading: function(jq){ r ...
- 二叉树遍历(Binary Tree Traversal)
二叉树的递归遍历比较简单,这里说一下非递归遍历,以中序遍历为例子. 非递归遍历主要用到栈来协助进行.对于一个二叉树,首先根节点入栈,如果有左儿子,则继续入栈,重复直到最左边的儿子,这时候此节点值为要遍 ...
- C#笔试(程序设计)
1.如何把一个Array复制到ArrayList里,如何把ArrayList复制到Array里? foreach( object o in array )arrayList.Add(o); Array ...
- over partition by与group by 的区别
(本文摘自scottpei的博客) over partition by与group by 的区别 今天看到一个老兄的问题, 大概如下: 查询出部门的最低工资的userid 号 表结构: D号 ...
- OpenGL 矩阵变换
Overview 几何数据--顶点位置,和标准向量(normal vectors),在OpenGL 管道raterization 处理过程之前可通过顶点操作(Vertex Operation)和基本组 ...
- python基础知识8——模块1——自定义模块和第三方开源模块
模块的认识 模块,用一砣代码实现了某个功能的代码集合. 类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合.而对于一个复杂的功能来,可能需 ...
- eclipse debug maven项目时出现缺少库的问题
调试maven web项目时出现缺少库的情况导致项目无法启动 可是打包到tomcat发布却一切正常 后来在stackoverlow上找到了解决方案 项目右键属性->Deployment Ass ...
- HMC破解控制台密码
一般我们装完HMC以后默认的登录控制台的账户是:admin 密码:abc123当我们可以自创建登录账户后,忘记密码了怎么办? 这里有两种方法: 1 由于HMC是suse系统,基于linux内核的,所以 ...