Advice for students of machine learning--转
原文地址:http://www.mimno.org/articles/ml-learn/
written by david mimno
One of my students recently asked me for advice on learning ML. Here’s what I wrote. It’s biased toward my own experience, but should generalize.
My current favorite introduction is Kevin Murphy’s book (Machine Learning). You might also want to look at books by Chris Bishop (Pattern Recognition), Daphne Koller (Probabilistic Graphical Models), and David MacKay (Information Theory, Inference and Learning Algorithms).
Anything you can learn about linear algebra and probability/statistics will be useful. Strang’s Introduction to Linear Algebra, Gelman, Carlin, Stern and Rubin’s Bayesian Data Analysis, and Gelman and Hill’s Data Analysis using Regression and Multilevel/Hierarchical models are some of my favorite books.
Don’t expect to get anything the first time. Read descriptions of the same thing from several different sources.
There’s nothing like trying something yourself. Pick a model and implement it. Work through open source implementations and compare. Are there computational or mathematical tricks that make things work?
Read a lot of papers. When I was a grad student, I had a 20 minute bus ride in the morning and the evening. I always tried to have an interesting paper in my bag. The bus isn’t the important part — what was useful was having about half an hour every day devoted to reading.
Pick a paper you like and “live inside it” for a week. Think about it all the time. Memorize the form of each equation. Take long walks and try to figure out how each variable affects the output, and how different variables interact. Think about how you get from Eq. 6 to Eq. 7 — authors often gloss over algebraic details. Fill them in.
Be patient and persistent. Remember von Neumann: “in mathematics you don’t understand things, you just get used to them.”
Advice for students of machine learning--转的更多相关文章
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
- 机器学习(Machine Learning)&深入学习(Deep Learning)资料
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林. ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料汇总 (上)
转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Ma ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料
机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008 ...
- 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- ADVICE FOR SHORT-TERM MACHINE LEARNING RESEARCH PROJECTS(短期机器学习研究的建议)
– Tim Rocktäschel, Jakob Foerster and Greg Farquhar, 29/08/2018 Every year we get contacted by stude ...
随机推荐
- hdu 4982 Goffi and Squary Partition
Goffi and Squary Partition Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Subm ...
- 套题 codeforces 360
A题:Opponents 直接模拟 #include <bits/stdc++.h> using namespace std; ]; int main() { int n,k; while ...
- Unity3d中Update()方法的替身
在网上看到一些资料说Unity3d的Update方法是如何如何不好,影响性能.作为一个菜鸟,之前我还觉得挺好用的,完全没用什么影响性能的问题存在.现在发现确实有很大的问题,我习惯把一大堆检测判断放在U ...
- c++的转换
1.静态转换 static_cast 用于明确定义的变换 ,包括 编译器允许的非强制转换和不太安全但定义清楚的变换.ps:(非强制变换,窄化变换,隐式转换,类层次静态定位,void*强制转换) 2.常 ...
- eclipse左边导航package explorer自动定位
eclipse或myeclipse中右边编辑界面点击 左边导航自动定位 左导航Package Explorer的右上角有一个黄色双向箭头图标,鼠标移动到上面提示"Link with ...
- wlan-mcs来自百度百科
工作原理 802.11n射频速率的配置通过MCS(Modulation and Coding Scheme,调制与编码策略)索引值实现.MCS调制编码表是802.11n为表征WLAN的通讯速率而提出的 ...
- poj 1806 分块模拟
Manhattan 2025 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 1318 Accepted: 703 Des ...
- delphi 中如何查看网页POSTDATA
procedure TForm1.WebBrowser1NewWindow2(Sender: TObject; var ppDisp: IDispatch; var Cancel: WordBool ...
- Metrics-Java版的指标度量工具之二
接上<Metrics-Java版的指标度量工具之一> 4. Histograms Histograms主要使用来统计数据的分布情况,最大值.最小值.平均值.中位数,百分比(75 ...
- Cloneable接口和Object的clone()方法
为什么要克隆 为什么要使用克隆,这其实反映的是一个很现实的问题,假如我们有一个对象: public class SimpleObject implements Cloneable { private ...