原文地址:http://www.mimno.org/articles/ml-learn/

written by david mimno

One of my students recently asked me for advice on learning ML. Here’s what I wrote. It’s biased toward my own experience, but should generalize.

My current favorite introduction is Kevin Murphy’s book (Machine Learning). You might also want to look at books by Chris Bishop (Pattern Recognition), Daphne Koller (Probabilistic Graphical Models), and David MacKay (Information Theory, Inference and Learning Algorithms).

Anything you can learn about linear algebra and probability/statistics will be useful. Strang’s Introduction to Linear Algebra, Gelman, Carlin, Stern and Rubin’s Bayesian Data Analysis, and Gelman and Hill’s Data Analysis using Regression and Multilevel/Hierarchical models are some of my favorite books.

Don’t expect to get anything the first time. Read descriptions of the same thing from several different sources.

There’s nothing like trying something yourself. Pick a model and implement it. Work through open source implementations and compare. Are there computational or mathematical tricks that make things work?

Read a lot of papers. When I was a grad student, I had a 20 minute bus ride in the morning and the evening. I always tried to have an interesting paper in my bag. The bus isn’t the important part — what was useful was having about half an hour every day devoted to reading.

Pick a paper you like and “live inside it” for a week. Think about it all the time. Memorize the form of each equation. Take long walks and try to figure out how each variable affects the output, and how different variables interact. Think about how you get from Eq. 6 to Eq. 7 — authors often gloss over algebraic details. Fill them in.

Be patient and persistent. Remember von Neumann: “in mathematics you don’t understand things, you just get used to them.”

Advice for students of machine learning--转的更多相关文章

  1. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  2. 机器学习(Machine Learning)&深度学习(Deep Learning)资料

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

  3. 机器学习(Machine Learning)&深入学习(Deep Learning)资料

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林. ...

  4. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  5. 机器学习(Machine Learning)&深度学习(Deep Learning)资料汇总 (上)

    转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Ma ...

  6. 机器学习(Machine Learning)&amp;深度学习(Deep Learning)资料

    机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008 ...

  7. 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

  8. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  9. ADVICE FOR SHORT-TERM MACHINE LEARNING RESEARCH PROJECTS(短期机器学习研究的建议)

    – Tim Rocktäschel, Jakob Foerster and Greg Farquhar, 29/08/2018 Every year we get contacted by stude ...

随机推荐

  1. Javac 手动编译时,出现乱码或编码格式问题

    使用Javac进行手动编译时,出现乱码或编码格式问题,原因如下:现象:编译时出现乱码或编译错误 即使改成UTF-8仍然会出错 原因如下:某些编辑器会往utf8文件中添加utf8标记(editplus称 ...

  2. RHEL6p5下ntfs分区的挂载及自动挂载

    No.1: #uname -a //查看你的Linux内核版本的命令 No.2:去http://www.atrpms.net/dist/el5/fuse/下载与内核接近的三个东西 fuse-libs- ...

  3. Hibernate快照

    l当session加载了某个对象后,会为该对象的值类型的属性复制一份快照.当刷出缓存时,通过比较对象的当前属性和快照,来判断对象的哪些属性发生了变化. 代码如下: /** * 修改学生信息 */ @T ...

  4. CocoaPods的版本升级

    我们在项目开发过程中为了更好的管理项目中引用的一些第三方的开源代码,我们在项目开发中都会使用CocoaPods,在项目中不使用Cocoapods可以绕过这篇帖子,但是Cocopods升级比较快,但是怎 ...

  5. Win10 设置外网多用户远程桌面连接

    主要原理:利用路由器的虚拟服务器功能,将内网的Ip地址通过端口映射提供给外网,使得外网能够访问到目的主机. 1. 配置路由器上的虚拟服务器,假设目的主机内网的ip为192.168.1.100,则配置如 ...

  6. SQL 数据库性能问题排查

    一个项目的运行,总伴随着性能问题,系统查询过慢,如何快速查询等 下面将简单讲解一下,如何去排查及解决这些问题. 开发过程中: 1:不要绝对的三范式,适当建立冗余能够提高查询速度,不用多表关联 2:能用 ...

  7. 异步CTP(Async CTP)为什么那样工作?

    对异步CTP感兴趣有很多原因.异步CTP使异步编程比以前更加容易了.它虽然没有Rx强大,但是更容易学.异步CTP介绍了两个新的关键字,async和await.异步方法(或Lambda表达式)必须返回v ...

  8. linux 2.6 驱动笔记(一)

    本文作为linux 2.6 驱动笔记,记录环境搭建及linux基本内核模块编译加载. 环境搭建: 硬件:OK6410开发板 目标板操作系统:linux 2.6 交叉编译环境:windows 7 + v ...

  9. 新浪微博UWP UI意见征求

    各位园主,卑职最近在忙一些新浪微博UWP的事儿,其中有一些UI上的design和实现,拿出来见见公婆,请大家给个意见: 您是喜欢A还是B.麻烦直接回在评论区了,写A或B,愿意多写几句意见的更欢迎! 先 ...

  10. 运用DebugDiag诊断ASP.Net异常

    Debug Diagnostic Tool (DebugDiag)是用来帮助诊断IIS/COM+等应用假死.性能差.内存泄露及碎片和崩溃等问题的工具. 本文介绍如何运用DebugDiag诊断特定的AS ...