【hbase】——Java操作Hbase进行建表、删表以及对数据进行增删改查,条件查询
1、搭建环境
新建JAVA项目,添加的包有:
有关Hadoop的hadoop-core-0.20.204.0.jar
有关Hbase的hbase-0.90.4.jar、hbase-0.90.4-tests.jar以及Hbase资源包中lib目录下的所有jar包
2、主要程序
- package com.wujintao.hbase.test;
- import java.io.IOException;
- import java.util.ArrayList;
- import java.util.List;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.hbase.HBaseConfiguration;
- import org.apache.hadoop.hbase.HColumnDescriptor;
- import org.apache.hadoop.hbase.HTableDescriptor;
- import org.apache.hadoop.hbase.KeyValue;
- import org.apache.hadoop.hbase.MasterNotRunningException;
- import org.apache.hadoop.hbase.ZooKeeperConnectionException;
- import org.apache.hadoop.hbase.client.Delete;
- import org.apache.hadoop.hbase.client.Get;
- import org.apache.hadoop.hbase.client.HBaseAdmin;
- import org.apache.hadoop.hbase.client.HTable;
- import org.apache.hadoop.hbase.client.HTablePool;
- import org.apache.hadoop.hbase.client.Put;
- import org.apache.hadoop.hbase.client.Result;
- import org.apache.hadoop.hbase.client.ResultScanner;
- import org.apache.hadoop.hbase.client.Scan;
- import org.apache.hadoop.hbase.filter.Filter;
- import org.apache.hadoop.hbase.filter.FilterList;
- import org.apache.hadoop.hbase.filter.SingleColumnValueFilter;
- import org.apache.hadoop.hbase.filter.CompareFilter.CompareOp;
- import org.apache.hadoop.hbase.util.Bytes;
- public class JinTaoTest {
- public static Configuration configuration;
- static {
- configuration = HBaseConfiguration.create();
- configuration.set("hbase.zookeeper.property.clientPort", "2181");
- configuration.set("hbase.zookeeper.quorum", "192.168.1.100");
- configuration.set("hbase.master", "192.168.1.100:600000");
- }
- public static void main(String[] args) {
- // createTable("wujintao");
- // insertData("wujintao");
- // QueryAll("wujintao");
- // QueryByCondition1("wujintao");
- // QueryByCondition2("wujintao");
- //QueryByCondition3("wujintao");
- //deleteRow("wujintao","abcdef");
- deleteByCondition("wujintao","abcdef");
- }
- /**
- * 创建表
- * @param tableName
- */
- public static void createTable(String tableName) {
- System.out.println("start create table ......");
- try {
- HBaseAdmin hBaseAdmin = new HBaseAdmin(configuration);
- if (hBaseAdmin.tableExists(tableName)) {// 如果存在要创建的表,那么先删除,再创建
- hBaseAdmin.disableTable(tableName);
- hBaseAdmin.deleteTable(tableName);
- System.out.println(tableName + " is exist,detele....");
- }
- HTableDescriptor tableDescriptor = new HTableDescriptor(tableName);
- tableDescriptor.addFamily(new HColumnDescriptor("column1"));
- tableDescriptor.addFamily(new HColumnDescriptor("column2"));
- tableDescriptor.addFamily(new HColumnDescriptor("column3"));
- hBaseAdmin.createTable(tableDescriptor);
- } catch (MasterNotRunningException e) {
- e.printStackTrace();
- } catch (ZooKeeperConnectionException e) {
- e.printStackTrace();
- } catch (IOException e) {
- e.printStackTrace();
- }
- System.out.println("end create table ......");
- }
- /**
- * 插入数据
- * @param tableName
- */
- public static void insertData(String tableName) {
- System.out.println("start insert data ......");
- HTablePool pool = new HTablePool(configuration, 1000);
- HTable table = (HTable) pool.getTable(tableName);
- Put put = new Put("112233bbbcccc".getBytes());// 一个PUT代表一行数据,再NEW一个PUT表示第二行数据,每行一个唯一的ROWKEY,此处rowkey为put构造方法中传入的值
- put.add("column1".getBytes(), null, "aaa".getBytes());// 本行数据的第一列
- put.add("column2".getBytes(), null, "bbb".getBytes());// 本行数据的第三列
- put.add("column3".getBytes(), null, "ccc".getBytes());// 本行数据的第三列
- try {
- table.put(put);
- } catch (IOException e) {
- e.printStackTrace();
- }
- System.out.println("end insert data ......");
- }
- /**
- * 删除一张表
- * @param tableName
- */
- public static void dropTable(String tableName) {
- try {
- HBaseAdmin admin = new HBaseAdmin(configuration);
- admin.disableTable(tableName);
- admin.deleteTable(tableName);
- } catch (MasterNotRunningException e) {
- e.printStackTrace();
- } catch (ZooKeeperConnectionException e) {
- e.printStackTrace();
- } catch (IOException e) {
- e.printStackTrace();
- }
- }
- /**
- * 根据 rowkey删除一条记录
- * @param tablename
- * @param rowkey
- */
- public static void deleteRow(String tablename, String rowkey) {
- try {
- HTable table = new HTable(configuration, tablename);
- List list = new ArrayList();
- Delete d1 = new Delete(rowkey.getBytes());
- list.add(d1);
- table.delete(list);
- System.out.println("删除行成功!");
- } catch (IOException e) {
- e.printStackTrace();
- }
- }
- /**
- * 组合条件删除
- * @param tablename
- * @param rowkey
- */
- public static void deleteByCondition(String tablename, String rowkey) {
- //目前还没有发现有效的API能够实现 根据非rowkey的条件删除 这个功能能,还有清空表全部数据的API操作
- }
- /**
- * 查询所有数据
- * @param tableName
- */
- public static void QueryAll(String tableName) {
- HTablePool pool = new HTablePool(configuration, 1000);
- HTable table = (HTable) pool.getTable(tableName);
- try {
- ResultScanner rs = table.getScanner(new Scan());
- for (Result r : rs) {
- System.out.println("获得到rowkey:" + new String(r.getRow()));
- for (KeyValue keyValue : r.raw()) {
- System.out.println("列:" + new String(keyValue.getFamily())
- + "====值:" + new String(keyValue.getValue()));
- }
- }
- } catch (IOException e) {
- e.printStackTrace();
- }
- }
- /**
- * 单条件查询,根据rowkey查询唯一一条记录
- * @param tableName
- */
- public static void QueryByCondition1(String tableName) {
- HTablePool pool = new HTablePool(configuration, 1000);
- HTable table = (HTable) pool.getTable(tableName);
- try {
- Get scan = new Get("abcdef".getBytes());// 根据rowkey查询
- Result r = table.get(scan);
- System.out.println("获得到rowkey:" + new String(r.getRow()));
- for (KeyValue keyValue : r.raw()) {
- System.out.println("列:" + new String(keyValue.getFamily())
- + "====值:" + new String(keyValue.getValue()));
- }
- } catch (IOException e) {
- e.printStackTrace();
- }
- }
- /**
- * 单条件按查询,查询多条记录
- * @param tableName
- */
- public static void QueryByCondition2(String tableName) {
- try {
- HTablePool pool = new HTablePool(configuration, 1000);
- HTable table = (HTable) pool.getTable(tableName);
- Filter filter = new SingleColumnValueFilter(Bytes
- .toBytes("column1"), null, CompareOp.EQUAL, Bytes
- .toBytes("aaa")); // 当列column1的值为aaa时进行查询
- Scan s = new Scan();
- s.setFilter(filter);
- ResultScanner rs = table.getScanner(s);
- for (Result r : rs) {
- System.out.println("获得到rowkey:" + new String(r.getRow()));
- for (KeyValue keyValue : r.raw()) {
- System.out.println("列:" + new String(keyValue.getFamily())
- + "====值:" + new String(keyValue.getValue()));
- }
- }
- } catch (Exception e) {
- e.printStackTrace();
- }
- }
- /**
- * 组合条件查询
- * @param tableName
- */
- public static void QueryByCondition3(String tableName) {
- try {
- HTablePool pool = new HTablePool(configuration, 1000);
- HTable table = (HTable) pool.getTable(tableName);
- List<Filter> filters = new ArrayList<Filter>();
- Filter filter1 = new SingleColumnValueFilter(Bytes
- .toBytes("column1"), null, CompareOp.EQUAL, Bytes
- .toBytes("aaa"));
- filters.add(filter1);
- Filter filter2 = new SingleColumnValueFilter(Bytes
- .toBytes("column2"), null, CompareOp.EQUAL, Bytes
- .toBytes("bbb"));
- filters.add(filter2);
- Filter filter3 = new SingleColumnValueFilter(Bytes
- .toBytes("column3"), null, CompareOp.EQUAL, Bytes
- .toBytes("ccc"));
- filters.add(filter3);
- FilterList filterList1 = new FilterList(filters);
- Scan scan = new Scan();
- scan.setFilter(filterList1);
- ResultScanner rs = table.getScanner(scan);
- for (Result r : rs) {
- System.out.println("获得到rowkey:" + new String(r.getRow()));
- for (KeyValue keyValue : r.raw()) {
- System.out.println("列:" + new String(keyValue.getFamily())
- + "====值:" + new String(keyValue.getValue()));
- }
- }
- rs.close();
- } catch (Exception e) {
- e.printStackTrace();
- }
- }
- }
注意:可能大家没看到更新数据的操作,其实更新的操作跟添加完全一致,只不过是添加呢rowkey不存在,更新呢rowkey已经存在,并且timstamp相同的情况下,还有就是目前好像还没办法实现hbase数据的分页查询,不知道有没有人知道怎么做
HBase性能优化建议:
针对前面的代码,有很多不足之处,在此我就不修改上面的代码了,只是提出建议的地方,大家自己加上
1)配置
当你调用create方法时将会加载两个配置文件:hbase-default.xml and hbase-site.xml,利用的是当前的java类路径, 代码中configuration设置的这些配置将会覆盖hbase-default.xml和hbase-site.xml中相同的配置,如果两个配置文件都存在并且都设置好了相应参上面的属性下面的属性即可
2)关于建表
public void createTable(HTableDescriptor desc)
HTableDescriptor 代表的是表的schema, 提供的方法中比较有用的有
setMaxFileSize,指定最大的region size
setMemStoreFlushSize 指定memstore flush到HDFS上的文件大小
增加family通过 addFamily方法
public void addFamily(final HColumnDescriptor family)
HColumnDescriptor代表的是column的schema,提供的方法比较常用的有
setTimeToLive:指定最大的TTL,单位是ms,过期数据会被自动删除。
setInMemory:指定是否放在内存中,对小表有用,可用于提高效率。默认关闭
setBloomFilter:指定是否使用BloomFilter,可提高随机查询效率。默认关闭
setCompressionType:设定数据压缩类型。默认无压缩。
setMaxVersions:指定数据最大保存的版本个数。默认为3。
注意的是,一般我们不去setInMemory为true,默认是关闭的
3)关于入库
官方建议
table.setAutoFlush(false); //数据入库之前先设置此项为false
table.setflushCommits();//入库完成后,手动刷入数据
注意:
在入库过程中,put.setWriteToWAL(true/flase);
关于这一项如果不希望大量数据在存储过程中丢失,建议设置为true,如果仅是在测试演练阶段,为了节省入库时间建议设置为false
4)关于获取表实例
HTablePool pool = new HTablePool(configuration, Integer.MAX_VALUE);
HTable table = (HTable) pool.getTable(tableName);
建议用表连接池的方式获取表,具体池有什么作用,我想用过数据库连接池的同学都知道,我就不再重复
不建议使用new HTable(configuration,tableName);的方式获取表
5)关于查询
建议每个查询语句都放入try catch语句块,并且finally中要进行关闭ResultScanner实例以及将不使用的表重新放入到HTablePool中的操作,具体做法如下
- public static void QueryAll(String tableName) {
- HTablePool pool = new HTablePool(configuration, Integer.MAX_VALUE);
- HTable table = null;
- ResultScanner rs = null;
- try {
- Scan scan = new Scan();
- table = (HTable) pool.getTable(tableName);
- rs = table.getScanner(scan);
- for (Result r : rs) {
- System.out.println("获得到rowkey:" + new String(r.getRow()));
- for (KeyValue keyValue : r.raw()) {
- System.out.println("列:" + new String(keyValue.getFamily())
- + "====值:" + new String(keyValue.getValue()));
- }
- }
- } catch (IOException e) {
- e.printStackTrace();
- }finally{
- rs.close();// 最后还得关闭
- pool.putTable(table); //实际应用过程中,pool获取实例的方式应该抽取为单例模式的,不应在每个方法都重新获取一次(单例明白?就是抽取到专门获取pool的逻辑类中,具体逻辑为如果pool存在着直接使用,如果不存在则new)
- }
- }
所以,以上代码有缺陷的地方,感兴趣的同学可以针对优化建议作出相应修改
【hbase】——Java操作Hbase进行建表、删表以及对数据进行增删改查,条件查询的更多相关文章
- HDFS只支持文件append操作, 而依赖HDFS的HBase如何完成数据的增删改查
转:http://www.th7.cn/db/nosql/201510/135382.shtml 1. HDFS的文件append功能 早期版本的HDFS不支持任何的文件更新操作,一旦一个文件创建.写 ...
- Django框架之第二篇--app注册、静态文件配置、form表单提交、pycharm连接数据库、django使用mysql数据库、表字段的增删改查、表数据的增删改查
本节知识点大致为:静态文件配置.form表单提交数据后端如何获取.request方法.pycharm连接数据库,django使用mysql数据库.表字段的增删改查.表数据的增删改查 一.创建app,创 ...
- OracleHelper(对增删改查分页查询操作进行了面向对象的封装,对批量增删改操作的事务封装)
公司的一个新项目使用ASP.NET MVC开发,经理让我写个OracleHelper,我从网上找了一个比较全的OracleHelper类,缺点是查询的时候返回DataSet,数据增删改要写很多代码(当 ...
- SQLAlchemy02 /SQLAlchemy对数据的增删改查操作、属性常用数据类型详解
SQLAlchemy02 /SQLAlchemy对数据的增删改查操作.属性常用数据类型详解 目录 SQLAlchemy02 /SQLAlchemy对数据的增删改查操作.属性常用数据类型详解 1.用se ...
- SQLAlchemy(二):SQLAlchemy对数据的增删改查操作、属性常用数据类型详解
SQLAlchemy02 /SQLAlchemy对数据的增删改查操作.属性常用数据类型详解 目录 SQLAlchemy02 /SQLAlchemy对数据的增删改查操作.属性常用数据类型详解 1.用se ...
- Java Maven:spring boot + Mybatis连接MySQL,通用mapper的增删改查,映射实现多表查询
1. MySQL自带库test添加表user.role 角色表role 用户表user 2. 添加依赖,配置属性 相关依赖:百度即可,此处略 application.properties spring ...
- 利用Java针对MySql封装的jdbc框架类 JdbcUtils 完整实现(包含增删改查、JavaBean反射原理,附源码)
最近看老罗的视频,跟着完成了利用Java操作MySql数据库的一个框架类JdbcUtils.java,完成对数据库的增删改查.其中查询这块,包括普通的查询和利用反射完成的查询,主要包括以下几个函数接口 ...
- 利用Java针对MySql封装的jdbc框架类 JdbcUtils 完整实现(包括增删改查、JavaBean反射原理,附源代码)
近期看老罗的视频,跟着完毕了利用Java操作MySql数据库的一个框架类JdbcUtils.java,完毕对数据库的增删改查.当中查询这块,包含普通的查询和利用反射完毕的查询,主要包含以下几个函数接口 ...
- Yii数据库操作增删改查-[增加\查询\更新\删除 AR模式]
在Yii的开发中常常需要去使用Yii的增删改查方法,这些方法又可以多次变化和组合,带来全方位的实现对数据库的处理,下面对这些方法做一些简单的整理和梳理,有遗漏或是BUG,敬请指出.灰常感谢!!! 一. ...
- Python教程:连接数据库,对数据进行增删改查操作
各位志同道合的同仁可以点击上方关注↑↑↑↑↑↑ 本教程致力于程序员快速掌握Python语言编程. 本文章内容是基于上次课程Python教程:操作数据库,MySql的安装详解 和python基础知识之上 ...
随机推荐
- DokuWiki用storage的模式在sae上部署后速度太慢
利用sae做的io wrapper接口,对dokuwiki做了基于sae的分布式storage存储改造,能正常安装和运行,但速度太慢,基本没什么用. 定义一个常量: define('SAESTORE_ ...
- codeforces 700A As Fast As Possible 二分求和?我觉得直接解更好
分析:一辆车最多载k个人,车的速度肯定比人快,所以想要到达时间最短,那么每个人必须做一次公交车.那么把n个人分成p=(n+k-1)/k组.设最短时间为t,每人乘车时间为t1,则t1*v2+(t-t1) ...
- Java集合源码分析(五)HashSet<E>
HashSet简介 HashSet实现Set接口,由哈希表(实际上是一个HashMap实例)支持.它不保证set 的迭代顺序:特别是它不保证该顺序恒久不变.此类允许使用null元素. HashSet源 ...
- Jquery实际应用,判断radio,selelct,checkbox是否选中及选中的值
jquery取radio单选按钮的值 $("input[name='items']:checked").val(); 另:判断radio是否选中并取得选中的值 如下所示: fun ...
- windows / linux系统中,端口被占用解决方法
一.在windows操作系统中,查询端口占用和清除端口占用的程序 提升权限后用:netstat -b或用 1.查询端口占用的进程ID 点击"开始"-->"运行&qu ...
- Monkey测试4——Monkey命令行可用的全部选项
Monkey命令行可用的全部选项 常规 --help 列出简单的用法. -v 命令行的每一个-v将增加反馈信息的级别. Level 0(缺省值)除启动提示.测试完成和最终结果之外,提供较少信息. Le ...
- loadrunner录制webservice接口需要用户名密码时的解决方法
当loadrunner进行webservice测试,进入访问地址,限制要输入用户名密码才能登陆时,添加以下代码: web_set_user("acerpc/admin"," ...
- C#如何用delegate实现Javascript的each方法
C#中有很多易混淆的关键词,例如delegate,Func, Action和 Predicate.Func, Action和 Predicate本质上都是delegate,下面看一下delegate概 ...
- Ionic - 先进的 HTML5 移动开发框架和 SDK
Ionic 是开源的 HTML5 移动开发框架,基于 HTML.JavaScript.CSS 构建漂亮的,跨平台的混合模式 App,能够和 AngularJS 很好的集成.目前最佳支持的平台是 iOS ...
- TortoiseSVN使用教程
一.下载安装文件: 图1.1 安装顺序:1.VisualSVN-Server-2.6.5.msi:2.TortoiseSVN-1.8.2.24708-win32-svn-1.8.3.msi:3.Lan ...