一般来讲,GPS直接提供的坐标(B,L,H)是1984年世界大地坐标系(WordGeodetic System 1984即WGS-84)的坐标,其中B为纬度,L为经度,H为大地高即是到WGS-84椭球面的高度。而在实际应用中,我国地图采用的是1954北京坐标系或者1980西安坐标系下的高斯投影坐标(x,y,),不过也有一些电子地图采用1954北京坐标系或者1980西安坐标系下的经纬度坐标(B,L),高程一般为海拔高度h。

    GPS的测量结果与我国的54系或80系坐标相差几十米至一百多米,随区域不同,差别也不同,经粗落统计,我国西部相差70米左右,东北部140米左右,南部75米左右,中部45米左右。现就上述几种坐标系进行简单介绍,供大家参阅,并提供各坐标系的基本参数,以便大家在使用过程中自定义坐标系。

1、1984世界大地坐标系

    WGS-84坐标系是美国国防部研制确定的大地坐标系,是一种协议地球坐标系。WGS-84坐标系的定义是:原点是地球的质心,空间直角坐标系的Z轴指向BIH(1984.0)定义的地极(CTP)方向,即国际协议原点CIO,它由IAU和IUGG共同推荐。X轴指向BIH定义的零度子午面和CTP赤道的交点,Y轴和Z,X轴构成右手坐标系。WGS-84椭球采用国际大地测量与地球物理联合会第17届大会测量常数推荐值,采用的两个常用基本几何参数:


长半轴a=6378137m;扁率f=1:298.257223563。

2、1954北京坐标系

    1954北京坐标系是将我国大地控制网与前苏联1942年普尔科沃大地坐标系相联结后建立的我国过渡性大地坐标系。属于参心大地坐标系,采用了前苏联的克拉索夫斯基椭球体。其长半轴a=6378245,扁率f=1/298.3。1954年北京坐标系虽然是苏联1942年坐标系的延伸,但也还不能说它们完全相同。  

3、1980西安坐标系

    1978年,我国决定建立新的国家大地坐标系统,并且在新的大地坐标系统中进行全国天文大地网的整体平差,这个坐标系统定名为1980年西安坐标系。属参心大地坐标系。1980年西安坐标系Xi'anGeodetic Coordinate System 1980 采用1975国际椭球,以JYD1968.0系统为椭球定向基准,大地原点设在陕西省泾阳县永乐镇,采用多点定位所建立的大地坐标系.其椭球参数采用1975年国际大地测量与地球物理联合会推荐值,它们为:其长半轴a=6378140m;扁率f=1/298.257。

4 高斯平面直角坐标系和UTM

    一般的地图均为平面图,其对应的也是平面坐标.因此,需要将椭球面上各点的大地坐标,按照一定的数学规律投影到平面上成为平面直角坐标.目前世界各国采用最广泛的高斯- 克吕格投影和墨卡托投影(UTM)均是正形投影(等角投影), 即该投影在小区域范围内使平面图形与椭球面上的图形保持相似。为了限制长度变形,,根据国际测量协会规定,将全球按一定经差分成若干带。我国采用6度带或3度带,6度带是自零度子午线起每隔经度。

    高斯平面直角坐标系一般以中央经线(L0)投影为纵轴X, 赤道投影为横轴Y,两轴交点即为各带的坐标原点。为了避免横坐标出现负值,在投影中规定将坐标纵轴西移500公里当作起始轴。为了区别某一坐标系统属于哪一带,通常在横轴坐标前加上带号,如(4231898m,21655933m),其中21即为带号。 城建坐标多采用三度带的高斯-克吕格投影。同一坐标系下的大地坐标(即经纬度坐标B,L)与其对应的高斯平面直角坐标(x,y)有严格的转换关系。现行的测绘的教科书的一般都有。

5、 地方独立坐标系

    在我国许多城市测量与工程测量中,若直接采用国家坐标系下的高斯平面直角坐标,则可能会由于远离中央子午线,或由于测区平均高程较大,而导致长度投影变形较大,难以满足工程上或实用上的精度要求。另一方面,对于一些特殊的测量,如大桥施工测量,水利水坝测量,滑坡变形监测等,采用国家坐标系在实用中也会很不方便。因此,基于限制变形,以及方便实用,科学的目的,在许多城市和工程测量中,常常会建立适合本地区的地方独立坐标系。建立地方独立坐标系,实际上就是通过一些元素的确定来决定地方参考椭球与投影面.地方参考椭球一般选择与当地平均高程相对应的参考椭球,该椭球的中心,轴向和扁率与国家参考椭球相同。其椭球半径α1增大为:α1=α+Δα1,Δα1=Hm+ζ0式中:Hm为当地平均海拔高程,ζ0为该地区的平均高程异常。而地方投影面的确定中,选取过测区中心的经线或某个起算点的经线作为独立中央子午线.以某个特定方便使用的点和方位为地方独立坐标系的起算原点和方位,并选取当地平均高程面Hm为投影面。

    既然说到了不同的坐标系,就存在坐标转换的问题。关于坐标转换,首先要搞清楚转换的严密性问题,即在同一个椭球里的坐标转换都是严密的,而在不同的椭球之间的转换这时不严密的。例如,由1954北京坐标系的大地坐标转换到954北京坐标系的高斯平面直角坐标是在同一参考椭球体范畴内的坐标转换,其转换过程是严密的。由1954北京坐标系的大地坐标转换到WGS-84的大地坐标,就属于不同椭球体间的转换。

    不同椭球体间的坐标转换在局部地区的采用的常用办法是相似变换法,即利用部分分布相对合理高等级公共点求出相应的转换参数。一般而言,比较严密的是用七参数的相似变换法,即X平移,Y平移,Z平移,X旋转,Y旋转,Z旋转,尺度变化K。要求得七参数就需要在一个地区需要3个以上的已知点,如果区域范围不大,最远点间的距离不大于30Km(经验值),这可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化K视为0,所以三参数只是七参数的一种特例。

如果不考虑高程的影响,对于不同椭球体下的高斯平面直角坐标可采用四参数的相似变换法,即四参数(x平移,y平移,尺度变化m,旋转角度α)。如果用户要求的精度低于20米,在一定范围(2'*2')内,就直接可以用二参数法(ΔB,ΔL)或(Δx,Δy)修正。但在实际操作中,这也取决于选取的公共点是否合理,并保证其足够的精度。

WGS84经纬度坐标与北京54坐标或者西安80坐标的关系的更多相关文章

  1. [转]地理投影,常用坐标系详解、WGS84、WGS84 Web墨卡托、WGS84 UTM、北京54坐标系、西安80坐标系、CGCS2000坐标系

    转自:http://www.rivermap.cn/docs/show-1829.html 常用坐标系详解 (一)WGS84坐标系 WGS-84坐标系(World Geodetic System一19 ...

  2. 使用ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标的转换

    [摘 要] 本文针对从事测绘工作者普遍遇到的坐标转换问题,简要介绍ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标转换原理和步骤. [关键词] ArcGIS 坐标转换 投影变换 1 坐标转换 ...

  3. 使用 Leaflet 显示 ArcGIS 生成西安80坐标的地图缓存

    Leaflet 是一个非常小巧灵活的 Geo js 库,esri 本身也在 Github 上有 leaflet 的相关项目.但是 leaflet 本身支持 Web Mercator Auxiliary ...

  4. CGJ02、BD09、西安80、北京54、CGCS2000常用坐标系详解

    一.万能地图下载器中的常用坐标系 水经注万能地图下载器中的常用的坐标系主要包括WGS84经纬度投影.WGS84 Web 墨卡托投影.WGS84 UTM 投影.北京54高斯投影.西安80高斯投影.CGC ...

  5. ArcGIS中的北京54和西安80投影坐标系详解

    ArcGIS中的北京54和西安80投影坐标系详解 1.首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理 ...

  6. 地球坐标系与投影方式的理解(关于北京54,西安80,WGS84;高斯,兰勃特,墨卡托投影)

    一.地球模型 地球是一个近似椭球体,测绘时用椭球模型逼近,这个模型叫做参考椭球,如下图: 赤道是一个半径为a的近似圆,任一圈经线是一个半径为b的近似圆.a称为椭球的长轴半径,b称为椭球的短轴半径. a ...

  7. 北京54全国80及WGS84坐标系的相互转换

    这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准.其中北京54坐标系,属三心坐标系,大地原点在苏联的普而科沃,长轴6378245m,短轴6356863,扁率1/298.3:西安80坐标系, ...

  8. 我国三大坐标系的区别(西安80、北京54、WGS-84)

    1.北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54.纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系. 1954年北京坐标 ...

  9. 百度坐标(BD09)、国测局坐标(火星坐标,GCJ02)、和WGS84坐标系之间的转换(JS版代码)

    /** * Created by Wandergis on 2015/7/8. * 提供了百度坐标(BD09).国测局坐标(火星坐标,GCJ02).和WGS84坐标系之间的转换 */ //定义一些常量 ...

随机推荐

  1. ubuntu14 opencv python 安装

    本文记录了Ubuntu 14.04下使用源码手动安装OpenCV 3.0的过程.此外记录了在Python中安装及载入OpenCV的方法. 1.安装OpenCV所需的库(编译器.必须库.可选库) GCC ...

  2. 2.4G无线射频通信模块nRF24L01+开发笔记(基于MSP430RF6989与STM32f0308)(1.(2)有错误,详见更正)

    根据网上的nRF24L01+例程和TI提供的MSP430RF6989的硬件SPI总线例程编写程序,对硬件MSP-EXP430RF6989 Launch Pad+nRF24L01P射频模块(淘宝购买)进 ...

  3. Java设计模式(十三) 别人再问你设计模式,叫他看这篇文章

    原创文章,转载请务注明出处 OOP三大基本特性 封装 封装,也就是把客观事物封装成抽象的类,并且类可以把自己的属性和方法只让可信的类操作,对不可信的进行信息隐藏. 继承 继承是指这样一种能力,它可以使 ...

  4. textarea自适应高度

    最近做项目遇见了这个自适应高度的问题,也在网上找了些资料,大多选择用DIV模拟textarea,但是这样就有安全性的问题,因为你是可以直接将HTML代码输入进去的. 接下来介绍的这种办法是采用两个te ...

  5. 开启Java博客

    已经转Java大半年了,Java知识都来自于工作,没有一个系统的学习,所以这一个多月我都在看Java的一些基本东西,准备系统性的学习下Java知识.这一个多月看的也挺多,从servlet,jsp,st ...

  6. JSTL配置

    1.下载jakarta-taglibs-standard-1.1.2.zip(在Weblogic中必须下载1.0版http://jakarta.apache.org/site/downloads/do ...

  7. EXTJS4.2中neptune主题的使用

    原文地址:http://blog.csdn.net/xieguojun2013/article/details/8880519 最近在在sencha.com官网了解到EXTJS的最新版本里增加了新的主 ...

  8. Enum.GetHashCode()的问题

    先说一下,正常如果代码可以定义成枚举,我是比较倾向于定义成枚举的,类似这样: public enum Gender { /// <summary> /// 男 /// </summa ...

  9. @SuppressWarnings("deprecation")

    在Java编译过程中会出现很多警告,有很多是安全的,但是每次编译有很多警告影响我们对error的过滤和修改,我们可以在代码中加上 @SuppressWarnings("XXXX") ...

  10. Combination Sum

    Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique c ...