LruCache详解之 Android 内存优化
概念:
LruCache
什么是LruCache?
LruCache实现原理是什么?
这两个问题其实可以作为一个问题来回答,知道了什么是 LruCache,就只然而然的知道 LruCache 的实现原理;Lru的全称是Least Recently Used ,近期最少使用的!所以我们可以推断出 LruCache 的实现原理:把近期最少使用的数据从缓存中移除,保留使用最频繁的数据,那具体代码要怎么实现呢,我们进入到源码中看看。
LruCache源码分析
public class LruCache<K, V> {
//缓存 map 集合,为什么要用LinkedHashMap
//因为没错取了缓存值之后,都要进行排序,以确保
//下次移除的是最少使用的值
private final LinkedHashMap<K, V> map;
//当前缓存的值
private int size;
//最大值
private int maxSize;
//添加到缓存中的个数
private int putCount;
//创建的个数
private int createCount;
//被移除的个数
private int evictionCount;
//命中个数
private int hitCount;
//丢失个数
private int missCount;
//实例化 Lru,需要传入缓存的最大值
//这个最大值可以是个数,比如对象的个数,也可以是内存的大小
//比如,最大内存只能缓存5兆
public LruCache(int maxSize) {
if (maxSize <= 0) {
throw new IllegalArgumentException("maxSize <= 0");
}
this.maxSize = maxSize;
this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
}
//重置最大缓存的值
public void resize(int maxSize) {
if (maxSize <= 0) {
throw new IllegalArgumentException("maxSize <= 0");
}
synchronized (this) {
this.maxSize = maxSize;
}
trimToSize(maxSize);
}
//通过 key 获取缓存值
public final V get(K key) {
if (key == null) {
throw new NullPointerException("key == null");
}
V mapValue;
synchronized (this) {
mapValue = map.get(key);
if (mapValue != null) {
hitCount++;
return mapValue;
}
missCount++;
}
//如果没有,用户可以去创建
V createdValue = create(key);
if (createdValue == null) {
return null;
}
synchronized (this) {
createCount++;
mapValue = map.put(key, createdValue);
if (mapValue != null) {
// There was a conflict so undo that last put
map.put(key, mapValue);
} else {
//缓存的大小改变
size += safeSizeOf(key, createdValue);
}
}
//这里没有移除,只是改变了位置
if (mapValue != null) {
entryRemoved(false, key, createdValue, mapValue);
return mapValue;
} else {
//判断缓存是否越界
trimToSize(maxSize);
return createdValue;
}
}
//添加缓存,跟上面这个方法的 create 之后的代码一样的
public final V put(K key, V value) {
if (key == null || value == null) {
throw new NullPointerException("key == null || value == null");
}
V previous;
synchronized (this) {
putCount++;
size += safeSizeOf(key, value);
previous = map.put(key, value);
if (previous != null) {
size -= safeSizeOf(key, previous);
}
}
if (previous != null) {
entryRemoved(false, key, previous, value);
}
trimToSize(maxSize);
return previous;
}
//检测缓存是否越界
private void trimToSize(int maxSize) {
while (true) {
K key;
V value;
synchronized (this) {
if (size < 0 || (map.isEmpty() && size != 0)) {
throw new IllegalStateException(getClass().getName()
+ ".sizeOf() is reporting inconsistent results!");
}
//如果没有,则返回
if (size <= maxSize) {
break;
}
//以下代码表示已经超出了最大范围
Map.Entry<K, V> toEvict = null;
for (Map.Entry<K, V> entry : map.entrySet()) {
toEvict = entry;
}
if (toEvict == null) {
break;
}
//移除最后一个,也就是最少使用的缓存
key = toEvict.getKey();
value = toEvict.getValue();
map.remove(key);
size -= safeSizeOf(key, value);
evictionCount++;
}
entryRemoved(true, key, value, null);
}
}
//手动移除,用户调用
public final V remove(K key) {
if (key == null) {
throw new NullPointerException("key == null");
}
V previous;
synchronized (this) {
previous = map.remove(key);
if (previous != null) {
size -= safeSizeOf(key, previous);
}
}
if (previous != null) {
entryRemoved(false, key, previous, null);
}
return previous;
}
//这里用户可以重写它,实现数据和内存回收操作
protected void entryRemoved(boolean evicted, K key, V oldValue, V newValue) {}
protected V create(K key) {
return null;
}
private int safeSizeOf(K key, V value) {
int result = sizeOf(key, value);
if (result < 0) {
throw new IllegalStateException("Negative size: " + key + "=" + value);
}
return result;
}
//这个方法要特别注意,跟我们实例化 LruCache 的 maxSize 要呼应,怎么做到呼应呢,比如 maxSize 的大小为缓存的个数,这里就是 return 1就 ok,如果是内存的大小,如果5M,这个就不能是个数 了,这是应该是每个缓存 value 的 size 大小,如果是 Bitmap,这应该是 bitmap.getByteCount();
protected int sizeOf(K key, V value) {
return 1;
}
//清空缓存
public final void evictAll() {
trimToSize(-1); // -1 will evict 0-sized elements
}
public synchronized final int size() {
return size;
}
public synchronized final int maxSize() {
return maxSize;
}
public synchronized final int hitCount() {
return hitCount;
}
public synchronized final int missCount() {
return missCount;
}
public synchronized final int createCount() {
return createCount;
}
public synchronized final int putCount() {
return putCount;
}
public synchronized final int evictionCount() {
return evictionCount;
}
public synchronized final Map<K, V> snapshot() {
return new LinkedHashMap<K, V>(map);
}
}
LruCache 使用
先来看两张内存使用的图

图-1

图-2
以上内存分析图所分析的是同一个应用的数据,唯一不同的是图-1没有使用 LruCache,而图-2使用了 LruCache;可以非常明显的看到,图-1的内存使用明显偏大,基本上都是在30M左右,而图-2的内存使用情况基本上在20M左右。这就足足省了将近10M的内存!
ok,下面把实现代码贴出来
/**
* Created by gyzhong on 15/4/5.
*/
public class LruPageAdapter extends PagerAdapter {
private List<String> mData ;
private LruCache<String,Bitmap> mLruCache ;
private int mTotalSize = (int) Runtime.getRuntime().totalMemory();
private ViewPager mViewPager ;
public LruPageAdapter(ViewPager viewPager ,List<String> data){
mData = data ;
mViewPager = viewPager ;
/*实例化LruCache*/
mLruCache = new LruCache<String,Bitmap>(mTotalSize/5){
/*当缓存大于我们设定的最大值时,会调用这个方法,我们可以用来做内存释放操作*/
@Override
protected void entryRemoved(boolean evicted, String key, Bitmap oldValue, Bitmap newValue) {
super.entryRemoved(evicted, key, oldValue, newValue);
if (evicted && oldValue != null){
oldValue.recycle();
}
}
/*创建 bitmap*/
@Override
protected Bitmap create(String key) {
final int resId = mViewPager.getResources().getIdentifier(key,"drawable",
mViewPager.getContext().getPackageName()) ;
return BitmapFactory.decodeResource(mViewPager.getResources(),resId) ;
}
/*获取每个 value 的大小*/
@Override
protected int sizeOf(String key, Bitmap value) {
return value.getByteCount();
}
} ;
}
@Override
public Object instantiateItem(ViewGroup container, int position) {
View view = LayoutInflater.from(container.getContext()).inflate(R.layout.view_pager_item, null) ;
ImageView imageView = (ImageView) view.findViewById(R.id.id_view_pager_item);
Bitmap bitmap = mLruCache.get(mData.get(position));
imageView.setImageBitmap(bitmap);
container.addView(view);
return view;
}
@Override
public void destroyItem(ViewGroup container, int position, Object object) {
container.removeView((View) object);
}
@Override
public int getCount() {
return mData.size();
}
@Override
public boolean isViewFromObject(View view, Object object) {
return view == object;
}
}
总结
1、LruCache 是基于 Lru算法实现的一种缓存机制;
2、Lru算法的原理是把近期最少使用的数据给移除掉,当然前提是当前数据的量大于设定的最大值。
3、LruCache 没有真正的释放内存,只是从 Map中移除掉数据,真正释放内存还是要用户手动释放。
原文地址:http://blog.csdn.net/jxxfzgy/article/details/44885623
LruCache详解之 Android 内存优化的更多相关文章
- Android内存优化(三)详解内存分析工具MAT
前言 在这个系列的前四篇文章中,我分别介绍了DVM.ART.内存泄漏和内存检测工具的相关知识点,这一篇我们通过一个小例子,来学习如何使用内存分析工具MAT. 1.概述 在进行内存分析时,我们可以使用M ...
- ANDROID内存优化——大汇总(转)
原文作者博客:转载请注明本文出自大苞米的博客(http://blog.csdn.net/a396901990),谢谢支持! ANDROID内存优化(大汇总——上) 写在最前: 本文的思路主要借鉴了20 ...
- Android内存优化之——static使用篇(使用MAT工具进行分析)
这篇文章主要配套与Android内存优化之——static使用篇向大家介绍MAT工具的使用,我们分析的内存泄漏程序是上一篇文章中static的使用内存泄漏的比较不容易发现泄漏的第二情况和第三种情况—— ...
- ANDROID内存优化(大汇总——中)
转载请注明本文出自大苞米的博客(http://blog.csdn.net/a396901990),谢谢支持! 写在最前: 本文的思路主要借鉴了2014年AnDevCon开发者大会的一个演讲PPT,加上 ...
- 【腾讯Bugly干货分享】Android内存优化总结&实践
本文来自于腾讯Bugly公众号(weixinBugly),未经作者同意,请勿转载,原文地址:https://mp.weixin.qq.com/s/2MsEAR9pQfMr1Sfs7cPdWQ 导语 智 ...
- Android内存优化大全(中)
转载请注明本文出自大苞米的博客(http://blog.csdn.net/a396901990),谢谢支持! 写在最前: 本文的思路主要借鉴了2014年AnDevCon开发者大会的一个演讲PPT,加上 ...
- 关于Android内存优化你应该知道的一切
介绍 在Android系统中,内存分配与释放分配在一定程度上会影响App性能的—鉴于其使用的是类似于Java的GC回收机制,因此系统会以消耗一定的效率为代价,进行垃圾回收. 在中国有句老话:”由俭入奢 ...
- [转]探索 Android 内存优化方法
前言 这篇文章的内容是我回顾和再学习 Android 内存优化的过程中整理出来的,整理的目的是让我自己对 Android 内存优化相关知识的认识更全面一些,分享的目的是希望大家也能从这些知识中得到一些 ...
- 大礼包!ANDROID内存优化(大汇总)
写在最前: 本文的思路主要借鉴了2014年AnDevCon开发者大会的一个演讲PPT,加上把网上搜集的各种内存零散知识点进行汇总.挑选.简化后整理而成. 所以我将本文定义为一个工具类的文章,如果你在A ...
随机推荐
- Java判断回文数算法简单实现
好久没写java的代码了, 今天闲来无事写段java的代码,算是为新的一年磨磨刀,开个头,算法是Java判断回文数算法简单实现,基本思想是利用字符串对应位置比较,如果所有可能位置都满足要求,则输入的是 ...
- Spring定时器,定时执行(quartz)
这个定时器与继承了timertask的定时器不同的是,这个定时器是更强大的,可以指定每分的第n秒,每天的第n时,每周的.每年的.来定时运行这个定时器.那么下面来讲诉如何使用quartz定时器. spr ...
- jQuery选择器(一)
晚上闲着没事,正好用来整理下jQuery的选择器,毕竟没有总结就不算学习嘛. 首先,对事件处理.遍历DOM和Ajax操作,都依赖于选择器. 1.CSS选择器 要使用某个HTML元素,就先要找到它,而c ...
- Moon.Orm 5.0 (MQL版) 实战实例
))) .) { ) { ) { ...
- 【Swift学习】Swift编程之旅---扩展(二十四)
扩展就是向一个已有的类.结构体或枚举类型添加新功能,包含属性和方法,如果你定义了一个扩展向一个已有类型添加新功能,那么这个新功能对该类型的所有已有实例中都是可用的,即使它们是在你的这个扩展的前面定义的 ...
- OpenSNS开发笔记(1)
数据分页: $Data = M('Channel'); // 实例化Data数据模型 $content = $Data->page($page, 4)->select(); $totalC ...
- javascript(js)小数精度丢失的解决方案
原因:js按照2进制来处理小数的加减乘除,在arg1的基础上 将arg2的精度进行扩展或逆扩展匹配,所以会出现如下情况. javascript(js)的小数点加减乘除问题,是一个js的bug如0.3* ...
- C++: read access data using ADOX.DLL and System::Data::OleDb
#pragma once #include "Form2.h" namespace cdemo { using namespace System; using namespace ...
- XE8 FMX SpeedButton 大图标(改 Style)
自从 XE8 提供 ImageList 带来了很多便利,但 SpeedButton 的图标太小(不够大气),还好 FMX 提供了 Style 可供使用者自订图标大小及显示位置,请自行按图索骥,做一遍: ...
- ios源码-ios游戏源码-ios源码下载
游戏源码 一款休闲类的音乐小游戏源码 该源码实现了一款休闲类的音乐小游戏源码,该游戏的源码很简单,而且游戏的玩法也很容易学会,只要我们点击视图中的grid,就可以 人气:2943运行环境:/Xco ...