题目:

Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways.


Expert as he was in this material, he saw at a glance that he'll
need a computer to calculate the number of ways to fill the large
rectangle whose dimensions were integer values, as well. Help him, so
that his dream won't turn into a nightmare!

Input

The
input contains several test cases. Each test case is made up of two
integer numbers: the height h and the width w of the large rectangle.
Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

Output

For
each test case, output the number of different ways the given rectangle
can be filled with small rectangles of size 2 times 1. Assume the given
large rectangle is oriented, i.e. count symmetrical tilings multiple
times.

Sample Input

1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0

Sample Output

1
0
1
2
3
5
144
51205
题意很简单就是求用1*2的小木块,有几种方法能构成h*w的长方体。
相当蛋疼的题目,可能是我比较菜吧,想了好久才找到适合DP的状态,而且状态数太多了,把内存的给爆了,迫不得以,用预处理去掉一维,内存才够用
状态的表示:
b是当前dp的矩形的宽度
dp[h][state]
h代表当前高度
state是三进制数来表示当前高度上每列的状态
2代表与当前高度同高
1代表比当前高度矮一格
0代表比当前高度矮两格
比如当
b=4
h=2
三进制2222,2221
分别代表2*4的矩形,和缺了一个角的2*4矩形
状态的转移:
为了防止出现重复的计算的情况,我们要保证状态转移的唯一性。
我想到方法是,每次操作剩下图形最高的列中最右边的列,因为这个列是唯一的,所以可以保证的转移的唯一性。
我们对这个列操作有两种
1,去掉这个两格,即去掉高2宽1的小木块
2,若这个列左边相邻的列也是与其等高的列,去掉这两个列个一格,即去掉高1宽2的小木块
代码实现:
因为这个转移方程挺复杂的,写成递推比较麻烦,所以我写成了记忆话搜索
 #include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
long long dp[][],ans[][];
int u[],k[],b;
int check(int state)
{
int x=state,que[]= {},i;
for(i=; i<=; i++)
{
que[i]=x%;
x/=;
}
for(i=; i<=; i++)
{
if(que[i]==)
{
if(que[i+]==)
que[i+]=;
else
return ;
}
}
return ;
}
long long dfs(int h,int state)
{
if(dp[h][state]==-)
{
if(h==)
{
dp[h][state]=check(state);/**当只剩下一列时,检查这列是否能用高1宽2的小木块组成*/
}
else
{
int x,i;
x=state;
for(i=; i<=b; i++)/**寻找最右边且高度与h相等的那列*/
{
if(x%==)
{
break;
}
x/=;
}
if(i>b)
dp[h][state]=dfs(h-,state+u[b]);/**没有与h等高的列,所以h下降,扫描下一高度*/
else
{
dp[h][state]=dfs(h,state-*k[i]);/**去掉高2宽1的小木块*/
if(i<b&&(x/)%==)/**判断与x相邻列的是否也是与等高*/
{
dp[h][state]+=dfs(h,state-k[i]-k[i+]);/**去掉高1宽2的小木块*/
}
}
}
}
return dp[h][state];
}
int main()
{
int i,j,len;
u[]=;
k[]=;
for(i=; i<=; i++)
{
k[i]=k[i-]*;
u[i]=u[i-]*+;
}
for(i=; i<=; i++)/**i是宽度*/
{
len=q[i].size();
b=i;
memset(dp,-,sizeof(dp));
if(i%==)/**判断奇偶,因为若面积是奇数则坑定种类为零,不用算了*/
{
for(j=; j<=i; j+=)/**只算偶高度*/
{
ans[i][j]=dfs(j,*u[i]);
}
}
else
{
for(j=; j<=i; j++)/**j是高度*/
{
ans[i][j]=dfs(j,*u[i]);
}
}
}
while(scanf("%d%d",&i,&j)&&i)
{
if(i<j)
swap(i,j);
printf("%I64d\n",ans[i][j]);
}
return ;
}
												

POJ 2411Mondriaan's Dream的更多相关文章

  1. POJ:2411-Mondriaan's Dream(矩形拼接方案)

    题目链接:http://poj.org/problem?id=2411 解题心得: 可以说是很经典的一个状压dp了,写dfs遍历肯定是要超时的,这个题的状态转移方程对新手来说有点吃力. 状态转移用的是 ...

  2. POJ 2411_Mondriaan's Dream

    题意: 用1*2和2*1的方块将给定长宽的矩形填满.问有多少种放法,对称的算两种. 分析: 状态压缩dp 首先用0表示前一行没有竖块占用这个位置,而1表示该位置和他上方的位置放了一个竖块,从而压缩状态 ...

  3. poj 2411 Mondriaan&#39;s Dream 【dp】

    题目:id=2411" target="_blank">poj 2411 Mondriaan's Dream 题意:给出一个n*m的矩阵,让你用1*2的矩阵铺满,然 ...

  4. POJ 2411 Mondriaan's Dream -- 状压DP

    题目:Mondriaan's Dream 链接:http://poj.org/problem?id=2411 题意:用 1*2 的瓷砖去填 n*m 的地板,问有多少种填法. 思路: 很久很久以前便做过 ...

  5. [poj P2411] Mondriaan's Dream

    [poj P2411] Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 18023   A ...

  6. POJ 2411 Mondriaan's Dream 插头dp

    题目链接: http://poj.org/problem?id=2411 Mondriaan's Dream Time Limit: 3000MSMemory Limit: 65536K 问题描述 S ...

  7. Poj 2411 Mondriaan's Dream(压缩矩阵DP)

    一.Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, ...

  8. Mondriaan's Dream POJ - 2411

    Mondriaan's Dream POJ - 2411 可以用状压dp,但是要打一下表.暴力枚举行.这一行的状态.上一行的状态,判断如果上一行的状态能转移到这一行的状态就转移. 状态定义:ans[i ...

  9. POJ 题目2411 Mondriaan's Dream(状压DP)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 13519   Accepted: 787 ...

随机推荐

  1. Dede技巧

    解决DEDE图集上传图片时跳出302错误   本地上传图集的时候突然提示网页出错,还爆出302错误. 解决办法是在include/userlogin.class.php文件中的第二行session_s ...

  2. Sorted Union-freecodecamp算法题目

    Sorted Union 1.要求 写一个 function,传入两个或两个以上的数组,返回一个以给定的原始数组排序的不包含重复值的新数组. 换句话说,所有数组中的所有值都应该以原始顺序被包含在内,但 ...

  3. GoF23种设计模式之行为型模式之观察者模式

    一.概述        定义对象之间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新.二.适用性1.当一个抽象模型有两个方面,其中一个方面依赖于另一方面的时 ...

  4. python入门学习笔记1:Python与C的简单区别

    转载于:https://www.cnblogs.com/mlgjb/p/7892130.html 并做适当修改 一:简单比较   C语言 python 执行速度 快 慢 跨平台 不可以 可以 用途 操 ...

  5. Django之URL

    URL是用户请求路径与views视图处理函数的一个映射 简单的路由配置及实现 这里是pycharm编辑开发为例,新建的django项目,会在url.py下自动生成这样一段代码: from django ...

  6. 简单了解hash

    hash,译为散列或哈希.就是把任意长度的输入(可变类型除外)经过hash算法,输出成固定长度的输出,该输出就是hash值.哈希值比原有的输出占用空间要小,但是不同的输出可能会hash出一样的值,所以 ...

  7. linux 安装elasticsearch

    一.检测是否已经安装的elasticsearch ps aux|grep elasticsearch. 二.下载elasticsearch.tar.gz并上传至服务器usr/local/文件夹下 三. ...

  8. poj 3281 Dining(网络流+拆点)

    Dining Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 20052   Accepted: 8915 Descripti ...

  9. 精通 JavaScript中的正则表达式

    精通 JS正则表达式 (精通?标题党 ) 正则表达式可以: •测试字符串的某个模式.例如,可以对一个输入字符串进行测试,看在该字符串是否存在一个电话号码模式或一个信用卡号码模式.这称为数据有效性验证  ...

  10. dubbo基础文档

    随着互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及流动计算架构势在必行,亟需一个治理系统确保架构有条不紊的演进. 单一应用架构 当网站流量很小时,只需一个应用, ...