题目:

Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways.


Expert as he was in this material, he saw at a glance that he'll
need a computer to calculate the number of ways to fill the large
rectangle whose dimensions were integer values, as well. Help him, so
that his dream won't turn into a nightmare!

Input

The
input contains several test cases. Each test case is made up of two
integer numbers: the height h and the width w of the large rectangle.
Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

Output

For
each test case, output the number of different ways the given rectangle
can be filled with small rectangles of size 2 times 1. Assume the given
large rectangle is oriented, i.e. count symmetrical tilings multiple
times.

Sample Input

1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0

Sample Output

1
0
1
2
3
5
144
51205
题意很简单就是求用1*2的小木块,有几种方法能构成h*w的长方体。
相当蛋疼的题目,可能是我比较菜吧,想了好久才找到适合DP的状态,而且状态数太多了,把内存的给爆了,迫不得以,用预处理去掉一维,内存才够用
状态的表示:
b是当前dp的矩形的宽度
dp[h][state]
h代表当前高度
state是三进制数来表示当前高度上每列的状态
2代表与当前高度同高
1代表比当前高度矮一格
0代表比当前高度矮两格
比如当
b=4
h=2
三进制2222,2221
分别代表2*4的矩形,和缺了一个角的2*4矩形
状态的转移:
为了防止出现重复的计算的情况,我们要保证状态转移的唯一性。
我想到方法是,每次操作剩下图形最高的列中最右边的列,因为这个列是唯一的,所以可以保证的转移的唯一性。
我们对这个列操作有两种
1,去掉这个两格,即去掉高2宽1的小木块
2,若这个列左边相邻的列也是与其等高的列,去掉这两个列个一格,即去掉高1宽2的小木块
代码实现:
因为这个转移方程挺复杂的,写成递推比较麻烦,所以我写成了记忆话搜索
 #include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
long long dp[][],ans[][];
int u[],k[],b;
int check(int state)
{
int x=state,que[]= {},i;
for(i=; i<=; i++)
{
que[i]=x%;
x/=;
}
for(i=; i<=; i++)
{
if(que[i]==)
{
if(que[i+]==)
que[i+]=;
else
return ;
}
}
return ;
}
long long dfs(int h,int state)
{
if(dp[h][state]==-)
{
if(h==)
{
dp[h][state]=check(state);/**当只剩下一列时,检查这列是否能用高1宽2的小木块组成*/
}
else
{
int x,i;
x=state;
for(i=; i<=b; i++)/**寻找最右边且高度与h相等的那列*/
{
if(x%==)
{
break;
}
x/=;
}
if(i>b)
dp[h][state]=dfs(h-,state+u[b]);/**没有与h等高的列,所以h下降,扫描下一高度*/
else
{
dp[h][state]=dfs(h,state-*k[i]);/**去掉高2宽1的小木块*/
if(i<b&&(x/)%==)/**判断与x相邻列的是否也是与等高*/
{
dp[h][state]+=dfs(h,state-k[i]-k[i+]);/**去掉高1宽2的小木块*/
}
}
}
}
return dp[h][state];
}
int main()
{
int i,j,len;
u[]=;
k[]=;
for(i=; i<=; i++)
{
k[i]=k[i-]*;
u[i]=u[i-]*+;
}
for(i=; i<=; i++)/**i是宽度*/
{
len=q[i].size();
b=i;
memset(dp,-,sizeof(dp));
if(i%==)/**判断奇偶,因为若面积是奇数则坑定种类为零,不用算了*/
{
for(j=; j<=i; j+=)/**只算偶高度*/
{
ans[i][j]=dfs(j,*u[i]);
}
}
else
{
for(j=; j<=i; j++)/**j是高度*/
{
ans[i][j]=dfs(j,*u[i]);
}
}
}
while(scanf("%d%d",&i,&j)&&i)
{
if(i<j)
swap(i,j);
printf("%I64d\n",ans[i][j]);
}
return ;
}
												

POJ 2411Mondriaan's Dream的更多相关文章

  1. POJ:2411-Mondriaan's Dream(矩形拼接方案)

    题目链接:http://poj.org/problem?id=2411 解题心得: 可以说是很经典的一个状压dp了,写dfs遍历肯定是要超时的,这个题的状态转移方程对新手来说有点吃力. 状态转移用的是 ...

  2. POJ 2411_Mondriaan's Dream

    题意: 用1*2和2*1的方块将给定长宽的矩形填满.问有多少种放法,对称的算两种. 分析: 状态压缩dp 首先用0表示前一行没有竖块占用这个位置,而1表示该位置和他上方的位置放了一个竖块,从而压缩状态 ...

  3. poj 2411 Mondriaan&#39;s Dream 【dp】

    题目:id=2411" target="_blank">poj 2411 Mondriaan's Dream 题意:给出一个n*m的矩阵,让你用1*2的矩阵铺满,然 ...

  4. POJ 2411 Mondriaan's Dream -- 状压DP

    题目:Mondriaan's Dream 链接:http://poj.org/problem?id=2411 题意:用 1*2 的瓷砖去填 n*m 的地板,问有多少种填法. 思路: 很久很久以前便做过 ...

  5. [poj P2411] Mondriaan's Dream

    [poj P2411] Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 18023   A ...

  6. POJ 2411 Mondriaan's Dream 插头dp

    题目链接: http://poj.org/problem?id=2411 Mondriaan's Dream Time Limit: 3000MSMemory Limit: 65536K 问题描述 S ...

  7. Poj 2411 Mondriaan's Dream(压缩矩阵DP)

    一.Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, ...

  8. Mondriaan's Dream POJ - 2411

    Mondriaan's Dream POJ - 2411 可以用状压dp,但是要打一下表.暴力枚举行.这一行的状态.上一行的状态,判断如果上一行的状态能转移到这一行的状态就转移. 状态定义:ans[i ...

  9. POJ 题目2411 Mondriaan's Dream(状压DP)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 13519   Accepted: 787 ...

随机推荐

  1. 解决xcode iOS真机调试正常,模拟器失败问题

    今天早上遇到xcode的真机可以调试,但是模拟器却爆出一大堆错,提示错误是没有找到引用的代码文件,真机和模拟器的配置都是一样的, 准确来说,应该是除了指令以外,其他都死一样的配置,所以大概是指令配置上 ...

  2. *运算和&运算

    /* &:取地址运算符 *:指针运算符(或称为间接运算符),取指针所指向的对象的内容 */ int a,b; int *pointer_1, *pointer_2; pointer_1 = & ...

  3. vmware虚拟机安装Windows 7后虚拟机自动挂起

    vmware虚拟机安装windows7后在一段时间中没有操作,虚拟机会自动挂起,是因为windows7中的设置的自动睡眠,打开[控制面板]=>[电源选项]=>[选择关闭显示器时间]将下面两 ...

  4. centos 安装 python3 分类链接

    上一篇文章描述了如何安装python3,但是在后续安装pip便不断报出缺少各类模块,安装一个又需要依赖另一个,导致安装过程非常繁琐.究其原因,我是安装centos-minimal版本,有许多功能不是完 ...

  5. 标准C++(2)

    一.类 C++是一种面向对象的语言,它在C语言的基础上添加了一种新的数据结构,类 ——class class是一种复合型的数据结构 它能够由不同类型的变量及函数组成 C++中的class与struct ...

  6. Re:从零开始的Linux之路(目录配置)

    基于 Red Hat Enterprise Linux 7.5 或者 CentOS 7.4 FHS协议(Filesystem Hierarchy Standard)——文件系统层次化标准 该标准定义了 ...

  7. Python 中的for,if-else和while语句

    for 循环 功能 for 循环是一种迭代循环机制,迭代即重复相同的逻辑操作,每次的操作都是基于上一次的结果而进行的.并且for循环可以遍历任何序列的项目,如一个列表或者一个字符串 语法 for 循环 ...

  8. Java-basic-3-运算符-修饰符-循环

    运算符: 与C++类似,特殊的有: 1)按位右移补零操作符: 2)instanceof运算符:判断一个实例是否是某类/接口类型 如果是/类型兼容,则返回true // superclass class ...

  9. AD采样求平均STM32实现

    iADC_read(, &u16NTC_1_Sample_Val_ARR[]); == ui8FirstSampleFlag) { ; i<; i++) { u16NTC_1_Sampl ...

  10. TCP的三次握手和四次握手

    三次握手(建立连接) 首先,服务器进程(B)先创建传控制块TCB(用来存储连接信息,如连接表,发送和接收序号等),准备接收客户进程(A)的请求.然后服务器进程处于LISTEN(收听)状态,等待客户的连 ...