UVA 116 Unidirectional TSP(DP最短路字典序)
Description
| Unidirectional TSP |
Background
Problems that require minimum paths through some domain appear in many different areas of computer science. For example, one of the constraints in VLSI routing problems is minimizing wire length. The Traveling Salesperson Problem (TSP) -- finding whether all the cities in a salesperson's route can be visited exactly once with a specified limit on travel time -- is one of the canonical examples of an NP-complete problem; solutions appear to require an inordinate amount of time to generate, but are simple to check.
This problem deals with finding a minimal path through a grid of points while traveling only from left to right.
The Problem
Given an
matrix of integers, you are to write a program that computes a path of minimal weight. A path starts anywhere in column 1 (the first column) and consists of a sequence of steps terminating in column n (the last column). A step consists of traveling from column i to column i+1 in an adjacent (horizontal or diagonal) row. The first and last rows (rows 1 and m) of a matrix are considered adjacent, i.e., the matrix ``wraps'' so that it represents a horizontal cylinder. Legal steps are illustrated below.

The weight of a path is the sum of the integers in each of the n cells of the matrix that are visited.
For example, two slightly different
matrices are shown below (the only difference is the numbers in the bottom row).

The minimal path is illustrated for each matrix. Note that the path for the matrix on the right takes advantage of the adjacency property of the first and last rows.
The Input
The input consists of a sequence of matrix specifications. Each matrix specification consists of the row and column dimensions in that order on a line followed by
integers where m is the row dimension and n is the column dimension. The integers appear in the input in row major order, i.e., the first n integers constitute the first row of the matrix, the second n integers constitute the second row and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. There will be one or more matrix specifications in an input file. Input is terminated by end-of-file.
For each specification the number of rows will be between 1 and 10 inclusive; the number of columns will be between 1 and 100 inclusive. No path's weight will exceed integer values representable using 30 bits.
The Output
Two lines should be output for each matrix specification in the input file, the first line represents a minimal-weight path, and the second line is the cost of a minimal path. The path consists of a sequence of n integers (separated by one or more spaces) representing the rows that constitute the minimal path. If there is more than one path of minimal weight the path that is lexicographically smallest should be output.
Sample Input
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 8 6 4
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 1 2 3
2 2
9 10 9 10
Sample Output
1 2 3 4 4 5
16
1 2 1 5 4 5
11
1 1
19
/*
从前往后推,把所有解找出来再找字典序最小的,WA了。
从后往前推,直接是字典序最小的。
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int INF=;
int d[][],dir[][]={,-,-,-,,-};
int m,n,a[][],next[][]; int main()
{
int i,j,k;
while(~scanf("%d%d",&n,&m))
{
for(i=;i<=n;i++)for(j=;j<=m;j++) scanf("%d",&a[i][j]);
memset(next,-,sizeof(next));
for(i=;i<=n;i++) d[i][m]=a[i][m];
for(i=;i<=n;i++) for(j=;j<m;j++) d[i][j]=INF;
for(i=m;i>=;i--)
{
for(j=;j<=n;j++)
{
for(k=;k<;k++)
{
int x=((j+dir[k][]-)%n+n)%n+;
int y=i+dir[k][];
if(d[x][y]>d[j][i]+a[x][y])
{
d[x][y]=d[j][i]+a[x][y];
next[x][y]=j;
}
else if(d[x][y] == d[j][i]+a[x][y] && next[x][y] > j)
next[x][y] = j; }
}
}
int ansm=INF,ansi;
for(i=;i<=n;i++)
if(ansm>d[i][])
{
ansm=d[i][];ansi=i;
}
for(i=;i<=m;i++)
{
printf(i==?"%d":" %d",ansi);
ansi=next[ansi][i];
}
printf("\n%d\n",ansm);
}
return ;
}
UVA 116 Unidirectional TSP(DP最短路字典序)的更多相关文章
- UVA 116 Unidirectional TSP(dp + 数塔问题)
Unidirectional TSP Background Problems that require minimum paths through some domain appear in ma ...
- UVa 116 Unidirectional TSP (DP)
该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...
- uva 116 Unidirectional TSP (DP)
uva 116 Unidirectional TSP Background Problems that require minimum paths through some domain appear ...
- uva 116 Unidirectional TSP【号码塔+打印路径】
主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...
- UVA - 116 Unidirectional TSP 多段图的最短路 dp
题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...
- UVA 116 Unidirectional TSP 经典dp题
题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...
- uva 116 Unidirectional TSP(动态规划,多段图上的最短路)
这道题目并不是很难理解,题目大意就是求从第一列到最后一列的一个字典序最小的最短路,要求不仅输出最短路长度,还要输出字典序最小的路径. 这道题可以利用动态规划求解.状态定义为: cost[i][j] = ...
- UVA - 116 Unidirectional TSP (单向TSP)(dp---多段图的最短路)
题意:给一个m行n列(m<=10, n<=100)的整数矩阵,从第一列任何一个位置出发每次往右,右上或右下走一格,最终到达最后一列.要求经过的整数之和最小.第一行的上一行是最后一行,最后一 ...
- UVa - 116 - Unidirectional TSP
Background Problems that require minimum paths through some domain appear in many different areas of ...
随机推荐
- key directories in the linux file system
Key directories in the file system: */: Root directory (base of file system) /bin: Executable progra ...
- ES6学习总结 (二)
一:ES6为函数做了哪些扩展 参数的默认值 传统写法: function person(n,a){ var name =n || "zhangsan"; var age = a | ...
- NOIP模拟赛 水灾
大雨应经下了几天雨,却还是没有停的样子.土豪CCY刚从外地赚完1e元回来,知道不久除了自己别墅,其他的地方都将会被洪水淹没. CCY所在的城市可以用一个N*M(N,M<=50)的地图表示,地图上 ...
- 转 fine-tuning (微调)
https://blog.csdn.net/weixin_42137700/article/details/82107208
- NowCoder 9.9 模拟赛
T1.中位数 二分答案x,原序列大于x的置为1,小于x的置为-1,判断是否存在长度大于m的区间和大于0(也就是大于x的数多于小于x的数),若有,则ans>=x,否则ans<x #inclu ...
- 素材网站——mokuge
- 【php】expose_php 作用
php.ini expose_php = On expose_php = Off
- Python9-loggin模块-day29
什么叫日志日志 是用来记录用户行为或者代码的执行过程 # import logging # logging.debug('debug message') #低级别的 排除信息 # logging.in ...
- AJAX小练习
/index.jsp <%@ page language="java" contentType="text/html; charset=UTF-8" pa ...
- Centos 7下利用crontab定时执行任务详解
一 cron服务 cron服务是Linux的内置服务,但它不会开机自动启动.可以用以下命令启动和停止服务: /sbin/service crond start /sbin/service crond ...