Description

 
 Unidirectional TSP 

Background

Problems that require minimum paths through some domain appear in many different areas of computer science. For example, one of the constraints in VLSI routing problems is minimizing wire length. The Traveling Salesperson Problem (TSP) -- finding whether all the cities in a salesperson's route can be visited exactly once with a specified limit on travel time -- is one of the canonical examples of an NP-complete problem; solutions appear to require an inordinate amount of time to generate, but are simple to check.

This problem deals with finding a minimal path through a grid of points while traveling only from left to right.

The Problem

Given an  matrix of integers, you are to write a program that computes a path of minimal weight. A path starts anywhere in column 1 (the first column) and consists of a sequence of steps terminating in column n (the last column). A step consists of traveling from column i to column i+1 in an adjacent (horizontal or diagonal) row. The first and last rows (rows 1 and m) of a matrix are considered adjacent, i.e., the matrix ``wraps'' so that it represents a horizontal cylinder. Legal steps are illustrated below.

The weight of a path is the sum of the integers in each of the n cells of the matrix that are visited.

For example, two slightly different  matrices are shown below (the only difference is the numbers in the bottom row).

The minimal path is illustrated for each matrix. Note that the path for the matrix on the right takes advantage of the adjacency property of the first and last rows.

The Input

The input consists of a sequence of matrix specifications. Each matrix specification consists of the row and column dimensions in that order on a line followed by  integers where m is the row dimension and n is the column dimension. The integers appear in the input in row major order, i.e., the first n integers constitute the first row of the matrix, the second n integers constitute the second row and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. There will be one or more matrix specifications in an input file. Input is terminated by end-of-file.

For each specification the number of rows will be between 1 and 10 inclusive; the number of columns will be between 1 and 100 inclusive. No path's weight will exceed integer values representable using 30 bits.

The Output

Two lines should be output for each matrix specification in the input file, the first line represents a minimal-weight path, and the second line is the cost of a minimal path. The path consists of a sequence of n integers (separated by one or more spaces) representing the rows that constitute the minimal path. If there is more than one path of minimal weight the path that is lexicographically smallest should be output.

Sample Input

5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 8 6 4
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 1 2 3
2 2
9 10 9 10

Sample Output

1 2 3 4 4 5
16
1 2 1 5 4 5
11
1 1
19
 /*
从前往后推,把所有解找出来再找字典序最小的,WA了。
从后往前推,直接是字典序最小的。
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int INF=;
int d[][],dir[][]={,-,-,-,,-};
int m,n,a[][],next[][]; int main()
{
int i,j,k;
while(~scanf("%d%d",&n,&m))
{
for(i=;i<=n;i++)for(j=;j<=m;j++) scanf("%d",&a[i][j]);
memset(next,-,sizeof(next));
for(i=;i<=n;i++) d[i][m]=a[i][m];
for(i=;i<=n;i++) for(j=;j<m;j++) d[i][j]=INF;
for(i=m;i>=;i--)
{
for(j=;j<=n;j++)
{
for(k=;k<;k++)
{
int x=((j+dir[k][]-)%n+n)%n+;
int y=i+dir[k][];
if(d[x][y]>d[j][i]+a[x][y])
{
d[x][y]=d[j][i]+a[x][y];
next[x][y]=j;
}
else if(d[x][y] == d[j][i]+a[x][y] && next[x][y] > j)
next[x][y] = j; }
}
}
int ansm=INF,ansi;
for(i=;i<=n;i++)
if(ansm>d[i][])
{
ansm=d[i][];ansi=i;
}
for(i=;i<=m;i++)
{
printf(i==?"%d":" %d",ansi);
ansi=next[ansi][i];
}
printf("\n%d\n",ansm);
}
return ;
}

UVA 116 Unidirectional TSP(DP最短路字典序)的更多相关文章

  1. UVA 116 Unidirectional TSP(dp + 数塔问题)

     Unidirectional TSP  Background Problems that require minimum paths through some domain appear in ma ...

  2. UVa 116 Unidirectional TSP (DP)

    该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...

  3. uva 116 Unidirectional TSP (DP)

    uva 116 Unidirectional TSP Background Problems that require minimum paths through some domain appear ...

  4. uva 116 Unidirectional TSP【号码塔+打印路径】

    主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...

  5. UVA - 116 Unidirectional TSP 多段图的最短路 dp

    题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...

  6. UVA 116 Unidirectional TSP 经典dp题

    题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...

  7. uva 116 Unidirectional TSP(动态规划,多段图上的最短路)

    这道题目并不是很难理解,题目大意就是求从第一列到最后一列的一个字典序最小的最短路,要求不仅输出最短路长度,还要输出字典序最小的路径. 这道题可以利用动态规划求解.状态定义为: cost[i][j] = ...

  8. UVA - 116 Unidirectional TSP (单向TSP)(dp---多段图的最短路)

    题意:给一个m行n列(m<=10, n<=100)的整数矩阵,从第一列任何一个位置出发每次往右,右上或右下走一格,最终到达最后一列.要求经过的整数之和最小.第一行的上一行是最后一行,最后一 ...

  9. UVa - 116 - Unidirectional TSP

    Background Problems that require minimum paths through some domain appear in many different areas of ...

随机推荐

  1. opensue "Have a lot of fun..."的出处

    每次登陆opensuse都会出现“Have a lot of fun...”,觉得奇怪. 通过搜索发现在这是/etc/motd文件中配置的. MOTD(5)                       ...

  2. 【转】JavaScript 节点操作 以及DOMDocument属性和方法

    最近发现DOMDocument对象很重要,还有XMLHTTP也很重要 注意大小写一定不能弄错. 属性: 1Attributes 存储节点的属性列表(只读) 2childNodes 存储节点的子节点列表 ...

  3. JQuery EasyUI学习记录(四)

    1.EasyUI中的validatebox使用 提供的校验规则: 1.非空校验required="required" 2.使用validType指定 email: 正则表达式匹配电 ...

  4. Nginx: ubuntu系统上如何判断是否安装了Nginx?

    问题描述:ubuntu系统上,如何查看是否安装了Nginx? 解决方法:输入命令行:ps -ef | grep nginx master process后面就是Nginx的安装目录. 延伸:1. 如何 ...

  5. SpringBoot(一)_Eclipse的安装和使用

    1.Eclipse中安装STS插件: Help -> Eclipse Marketplace… Search或选择“Popular”标签,选择Spring Tool Suite (STS) fo ...

  6. 【转】MFC 程序入口和执行流程

    一 MFC程序执行过程剖析 1)我们知道在WIN32API程序当中,程序的入口为WinMain函数,在这个函数当中我们完成注册窗口类,创建窗口,进入消息循环,最后由操作系统根据发送到程序窗口的消息调用 ...

  7. MySQL 使用GTID进行复制

    MySQL 使用GTID进行复制 1. GTID的格式和存储 1.1 GTID 集 1.2 mysql.gtid_executed 表 1.3 mysql.gtid_executed 表压缩 2. G ...

  8. 基于idea创建Tomcat远程调试

    编辑完catalina文件后重启tomcat

  9. MySQL创建数据库,用户,赋予权限

    CREATE DATABASE 'voyager'; CREATE DATABASE `voyager`; CREATE USER 'dog'@'localhost' IDENTIFIED BY '1 ...

  10. nginx的url重写

    1.1 简介 url重写由ngx_http_rewrite_module模块提供,默认会安装,但该模块功能的实现需要pcre.URL重写技术不仅要求掌握几个指令的语法.熟悉简单的正则表达式,还需要尽量 ...