题目

Description

煤矿工地可以看成是由隧道连接挖煤点组成的无向图。为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处。于是矿主决定在某些挖煤点设立救援出口,使得无论哪一个挖煤点坍塌之后,其他挖煤点的工人都有一条道路通向救援出口。

请写一个程序,用来计算至少需要设置几个救援出口,以及不同最少救援出口的设置方案总数。

Input

输入文件有若干组数据,每组数据的第一行是一个正整数 N,表示工地的隧道数,接下来的 N 行每行是用空格隔开的两个整数 S 和 T ,表示挖煤点 S 与挖煤点 T 由隧道直接连接。输入数据以 0 结尾。

Output

输入文件中有多少组数据,输出文件中就有多少行。每行对应一组输入数据的结果。

其中第 i 行以 Case i: 开始(注意大小写,Case 与 i 之间有空格,i 与 : 之间无空格,: 之后有空格),其后是用空格隔开的两个正整数,第一个正整数表示对于第 i组输入数据至少需要设置几个救援出口,第二个正整数表示对于第 i 组输入数据不同最少救援出口的设置方案总数。

输出格式参照以下输入输出样例。

题解

再点双连通分量中,如果坏了其中一个点,那么剩下的点还是连通的,所以我们求一次点双连通分量,再仔细观察一下,如果一个点双中(非割点点数为 \(n\)):

  1. 没有割点,那么显然要两个通道,共 \(C_n^2\) 种选法。
  2. 有一个割点,那么在这个点双中就要有一个通道,共,有一个割点,那么在这个点双中就要有一个通道,共 \(n\) 种选法。
  3. 有两个或者两个以上的割点,则不需要通道。

问题解决了,不过我可能是太弱了,统计割点数和非割点数写挂了,我们其实可以把每个割点找出来,dfs 一遍,割点之间就是一个点双,另外相邻的割点也属于这个点双。

CODE

#include<iostream>
#include<stack>
#include<cstring>
#include<cstdio>
using namespace std; int dfn[10005],low[10005],cp[10005],cnt=0;
int bcc[10005],num[10005],son[10005],C=0;
bool vis[100005],iscp[100005];
int n,m,x,y,h[100005],tot=0,cas=0;
struct Edge{
int x,next;
}e[200005]; inline void add_edge(int x,int y){
e[++tot].x=y;
e[tot].next=h[x],h[x]=tot;
} stack<int> s; void tarjan(int x,int fa){
low[x]=dfn[x]=++cnt;
son[x]=0;
for(int i=h[x];i;i=e[i].next){
if(e[i].x==fa)continue;
if(!dfn[e[i].x]){
tarjan(e[i].x,x),son[x]++;
low[x]=min(low[x],low[e[i].x]);
if(low[e[i].x]>=dfn[x]&&fa!=0)iscp[x]=true;
}
else low[x]=min(low[x],dfn[e[i].x]);
}
if(son[x]>1&&fa==0)iscp[x]=true;
} void dfs(int x){
vis[x]=true,num[C]++;
for(int i=h[x];i;i=e[i].next){
if(vis[e[i].x])continue;
if(!iscp[e[i].x])dfs(e[i].x);
else{
if(bcc[e[i].x]!=C)
bcc[e[i].x]=C,cp[C]++;
}
}
} int main(){
while(scanf("%d",&m),m){
memset(h,0,sizeof(h));
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(bcc,0,sizeof(bcc));
memset(num,0,sizeof(num));
memset(cp,0,sizeof(cp));
memset(iscp,0,sizeof(iscp));
memset(vis,0,sizeof(vis));
tot=cnt=C=n=0;
for(int i=1;i<=m;i++){
scanf("%d%d",&x,&y);
add_edge(x,y);
add_edge(y,x);
n=max(n,max(x,y));
}
for(int i=1;i<=n;i++)
if(!dfn[i])tarjan(i,0);
unsigned long long sum=0,ans=1;
for(int i=1;i<=n;i++){
if(!iscp[i]&&!vis[i]){
C++,dfs(i);
if(cp[C]==1)sum++,ans*=num[C];
}
}
if(C==1)sum=2,ans=n*(n-1)/2;
printf("Case %d: ",++cas);
printf("%llu %llu\n",sum,ans);
}
}

[HNOI2012]矿场搭建(tarjan求点双)的更多相关文章

  1. bzoj 2730: [HNOI2012]矿场搭建——tarjan求点双

    Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出口,使得无论哪一 ...

  2. BZOJ 2730: [HNOI2012]矿场搭建( tarjan )

    先tarjan求出割点.. 割点把图分成了几个双连通分量..只需dfs找出即可. 然后一个bcc有>2个割点, 那么这个bcc就不用建了, 因为一定可以走到其他救援出口. 只有一个割点的bcc就 ...

  3. 【BZOJ2730】[HNOI2012]矿场搭建 Tarjan

    [BZOJ2730][HNOI2012]矿场搭建 Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处. ...

  4. BZOJ 2730 矿场搭建 Tarjan求割点

    思路: Tarjan求出来点双&割点 判一判就行了 //By SiriusRen #include <stack> #include <cstdio> #include ...

  5. BZOJ2730 [HNOI2012]矿场搭建 - Tarjan割点

    Solution 输入中没有出现过的矿场点是不用考虑的, 所以不用考虑只有 一个点 的点双联通分量. 要使某个挖矿点倒塌, 相当于割去这个点, 所以我们求一遍割点和点双联通分量. 之后的点双联通分量构 ...

  6. P3225 [HNOI2012]矿场搭建 tarjan割点

    这个题需要发现一点规律,就是先按割点求块,然后求每个联通块中有几个割点,假如没有割点,则需要建两个出口,如果一个割点,则需要建一个出口,2个以上不用建. 题干: 题目描述 煤矿工地可以看成是由隧道连接 ...

  7. [BZOJ2730][HNOI2012]矿场搭建(求割点)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2730 分析: 如果坍塌的点不是割点,那没什么影响,主要考虑坍塌的点是割点的情况. 显然 ...

  8. C++[Tarjan求点双连通分量,割点][HNOI2012]矿场搭建

    最近在学图论相关的内容,阅读这篇博客的前提是你已经基本了解了Tarjan求点双. 由割点的定义(删去这个点就可使这个图不连通)我们可以知道,坍塌的挖煤点只有在割点上才会使这个图不连通,而除了割点的其他 ...

  9. Tarjan 点双+割点+DFS【洛谷P3225】 [HNOI2012]矿场搭建

    P3225 [HNOI2012]矿场搭建 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤 ...

  10. 【BZOJ-2730】矿场搭建 Tarjan 双连通分量

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1602  Solved: 751[Submit][Statu ...

随机推荐

  1. Dungeon Master POJ - 2251 (搜索)

    Dungeon Master Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 48605   Accepted: 18339 ...

  2. cf550C. Divisibility by Eight(结论)

    题意 给出长度为$n$的字符串,判断是否能删除一些数后被$8$整除 Sol 神仙题啊Orz 结论: 若数字的后三位能被$8$整除,则该数字能被$8$整除 证明 设$x = 10000 * a_i + ...

  3. shell数组脚本

    #!/bin/bash array=( ) ;i<${#array[*]};i++)) do echo ${array[i]} done 脚本2 #!/bin/bash array=( ) fo ...

  4. 对数据仓库Hive的一些认识

    首先我们得明白什么是数据仓库?   数据仓库,英文名称为Data warehouse,可简写为DW或DWH.数据仓库的目的是构建面向分析的集成化数据环境,为企业提供决策支持(Decision Supp ...

  5. Python入门必学:字符串和编码正确的使用方法

    字符编码,我们已经讲过了,字符串也是一种数据类型,但是,字符串比较特殊的是还有一个编码问题. 因为计算机只能处理数字,如果要处理文本,就必须先把文本转换为数字才能处理.最早的计算机在设计时采用8个比特 ...

  6. Codeforces Round #456 (Div. 2) B. New Year's Eve

    传送门:http://codeforces.com/contest/912/problem/B B. New Year's Eve time limit per test1 second memory ...

  7. POJ3320 尺取法的正确使用法

    一.前言及题意: 最近一直在找题训练,想要更加系统的补补思维,补补漏洞什么的,以避免被个类似于脑筋急转弯的题目干倒,于是在四处找书,找了红书.蓝书,似乎都有些不尽如人意.这两天看到了日本人的白书,重新 ...

  8. git+jenkins持续集成三-定时构建语法

    构建位置:选择或创建工程_设置_构建触发器 1. 定时构建语法:* * * * * (五颗星,多个时间点,中间用逗号隔开)第一个*表示分钟,取值0~59第二个*表示小时,取值0~23第三个*表示一个月 ...

  9. mojoportal在IE10中点击ImageButton出错的处理方法

    在ie10中,如果点击了mojoportal中的imagebutton,会出现错误,在ie10之前的浏览器,及ie10的兼容模式中及谷歌浏览器中都不会出现. 日志中 错误信息如下: 2013-09-2 ...

  10. Python-伪私有属性

    原文:http://blog.itpub.net/26250550/viewspace-1411768/ 通常在 Python 中,我们都被告知可以使用双下划线开头的方法名定义方法来达到私有函数的目标 ...