Portal

Description

给出一个\(n(n\leq35000)\)个数的数列\(\{a_i\}\)和\(m(m\leq50)\)。将原数列划分成\(m\)个连续的部分,每个部分的权值等于其中不同的数的个数。求所有划分方案中,所有部分权值和中的最大值。

Solution

线段树优化DP。

记录\(f[k][i]\)表示将前\(i\)个数划分为\(k\)段的最大权值和,\(w(i,j)\)表示\([L,R]\)的权值,那么容易列出转移方程:

\[ f[k][i]=max\{f[k-1][j]+w(j+1,i)\} \quad (0\leq j \leq i-1)$$ 复杂度为$O(n^2m)$。
考虑一下如何简化$w$。记录$a_x$上一次出现的位置为$pre_x$,则$a_x$为$pre_x+1\leq i \leq x$的$w(i,x)$提供了$1$的贡献。那么我们如果想从$w(i,x-1)$转移到$w(i,x)$,只需对区间$[pre_x+1,x]$加$1$即可。
那么我们要做的就是维护$f[k-1][j]+w(j+1,i)$的区间最值,用线段树即可。第二维由$i$变为$i+1$时,对线段树进行一次区间加即可。
> 时间复杂度$O(nk\cdot logn)$。

##Code
```cpp
//The Bakery
#include <cstdio>
inline char gc()
{
static char now[1<<16],*s,*t;
if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}
return *s++;
}
inline int read()
{
int x=0; char ch=gc();
while(ch<'0'||'9'<ch) ch=gc();
while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
return x;
}
inline int max(int x,int y) {return x>y?x:y;}
const int N=4e4;
int n,m,a[N];
int pre[N],pre1[N];
#define Ls (p<<1)
#define Rs (p<<1|1)
const int N1=N<<2;
int rt,val[N1]; int add[N1];
void update(int p) {val[p]=max(val[Ls],val[Rs]);}
void addV(int p,int v) {add[p]+=v,val[p]+=v;}
void pushdw(int p) {if(add[p]) addV(Ls,add[p]),addV(Rs,add[p]),add[p]=0;}
int optL,optR;
void ins(int p,int L0,int R0,int v,int type)
{
if(optL<=L0&&R0<=optR)
{
if(type==1) addV(p,v);
else val[p]=v;
return;
}
pushdw(p);
int mid=L0+R0>>1;
if(optL<=mid) ins(Ls,L0,mid,v,type);
if(mid<optR) ins(Rs,mid+1,R0,v,type);
update(p);
}
int query(int p,int L0,int R0)
{
if(optL<=L0&&R0<=optR) return val[p];
pushdw(p);
int mid=L0+R0>>1; int r=0;
if(optL<=mid) r=max(r,query(Ls,L0,mid));
if(mid<optR) r=max(r,query(Rs,mid+1,R0));
return r;
}
int f[N];
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
{
a[i]=read();
pre[i]=pre1[a[i]],pre1[a[i]]=i;
}
rt=1;
for(int k=1;k<=m;k++)
{
for(int i=k;i<=n;i++)
{
optL=pre[i],optR=i-1,ins(rt,0,n,1,1);
optL=0,optR=i-1,f[i]=query(rt,0,n);
}
if(k==m) break;
for(int i=0;i<=n;i++) optL=optR=i,ins(rt,0,n,f[i],2);
}
printf("%d\n",f[n]);
return 0;
}
```\]

Codeforces834D - The Bakery的更多相关文章

  1. Codeforeces 707B Bakery(BFS)

    B. Bakery time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...

  2. Codeforces Round #368 (Div. 2) B. Bakery (模拟)

    Bakery 题目链接: http://codeforces.com/contest/707/problem/B Description Masha wants to open her own bak ...

  3. 信号量和PV操作写出Bakery算法的同步程序

    面包店烹制面包及蛋糕,由n个销售员卖出.当有顾客进店购买面包或蛋糕时,应先在取号机上取号,然后等待叫号,若有销售员空闲时便叫下一号,试用信号量和PV操作写出Bakery算法的同步程序. 设计要求 1) ...

  4. Codeforces 834D The Bakery【dp+线段树维护+lazy】

    D. The Bakery time limit per test:2.5 seconds memory limit per test:256 megabytes input:standard inp ...

  5. Codeforces 834D The Bakery - 动态规划 - 线段树

    Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredient ...

  6. Codeforces Round #426 (Div. 1) B The Bakery (线段树+dp)

    B. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...

  7. Codeforces Round #368 (Div. 2) B. Bakery 水题

    B. Bakery 题目连接: http://www.codeforces.com/contest/707/problem/B Description Masha wants to open her ...

  8. Codeforces 834D - The Bakery(dp+线段树)

    834D - The Bakery 思路:dp[i][j]表示到第j个数为止分成i段的最大总和值. dp[i][j]=max{dp[i-1][x]+c(x+1,j)(i-1≤x≤j-1)},c(x+1 ...

  9. CF833B The Bakery 线段树,DP

    CF833B The Bakery LG传送门 线段树优化DP. 其实这是很久以前就应该做了的一道题,由于颓废一直咕在那里,其实还是挺不错的一道题. 先考虑\(O(n^2k)\)做法:设\(f[i][ ...

随机推荐

  1. Elastic Search Java Api 创建索引结构,添加索引

    创建TCP客户端 Client client = new TransportClient() .addTransportAddress(new InetSocketTransportAddress( ...

  2. PAT (Basic Level) Practise (中文)- 1013. 数素数 (20)

    http://www.patest.cn/contests/pat-b-practise/1013 令Pi表示第i个素数.现任给两个正整数M <= N <= 104,请输出PM到PN的所有 ...

  3. 采用maven 对tomcat 进行自动部署

    在工作过程中经常会遇到项目频繁发不到额过程,而且在这个过程中会一直进行一些简单但是繁琐的重复性工程 1.打war 包 2.停掉tomcat 3.copy war 包 4.启动tomcat 听说mave ...

  4. linux 使用wget下载https连接地址cannot verify github.com's certificate

    使用linux的wget下载时候会出现网站没有证书警告的问题, 例如下载git时,可以使用wget https://github.com/git/git/archive/v2.3.0.zip --no ...

  5. 从输入URL到页面加载完成的过程中都发生了什么事情?

    为了便于理解,我将整个过程分为了六个问题来展开. 第一个问题:从输入 URL 到浏览器接收的过程中发生了什么事情? 从触屏到 CPU 首先是「输入 URL」,大部分人的第一反应会是键盘,不过为了与时俱 ...

  6. xmpp 协议详解

    XMPP(可扩展消息处理现场协议)是基于可扩展标记语言(XML)的协议,它用于即时消息(IM)以及在线现场探测.它在促进服务器之间的准即时操作.这个协议可能最终允许因特网用户向因特网上的其他任何人发送 ...

  7. Flask-数据与路由

    数据 图书数据库的地址 # 基地址 http://t.yushu.im # 关键字搜索 http://t.yushu.im/v2/book/search?q={}&start={}&c ...

  8. tempfs详解

    致因 在平常工作中,我们经常需要查看Linux服务器磁盘挂载使用情况,可以使用df命令,不知大家注意到没有,我们使用此命令除了会查看到系统盘以及数据盘挂载情况,还会看到一个tmpfs也在挂载. [ro ...

  9. ACM-ICPC 2017 Asia Urumqi A. Coins

    Alice and Bob are playing a simple game. They line up a row of n identical coins, all with the heads ...

  10. nw335 debian sid x86-64 -- 1 需求介绍

    自己的台式机上面有有线网卡,路由器在客厅,托一条长长的线,关门也不方便.没有选择PCI无线网卡,没有选择nano类型的迷你网卡.买了nw335,带一条5DB天线,信号应该会好点.于是,开始了在debi ...