[AtCoderContest010D]Decrementing

试题描述

There are \(N\) integers written on a blackboard. The \(i\)-th integer is \(A_i\), and the greatest common divisor of these integers is \(1\).

Takahashi and Aoki will play a game using these integers. In this game, starting from Takahashi the two player alternately perform the following operation:

  • Select one integer on the blackboard that is not less than \(2\), and subtract \(1\) from the integer.

  • Then, divide all the integers on the black board by \(g\), where \(g\) is the greatest common divisor of the integers written on the blackboard.

  • The player who is left with only \(1\)s on the blackboard and thus cannot perform the operation, loses the game. Assuming that both players play optimally, determine the winner of the game.

两个人玩游戏,他们轮流操作一个初始时最大公约数为 \(1\) 的序列,一次操作是将一个数减 \(1\),然后所有数除以它们的最大公约数,最终无法操作者输,问是否先手必胜。

输入

The input is given from Standard Input in the following format:

N
A_1 A_2 … A_N

输出

If Takahashi will win, print First. If Aoki will win, print Second.

输入示例1

3
3 6 7

输出示例1

First

输入示例2

4
1 2 4 8

输出示例2

First

输入示例3

5
7 8 8 8 8

输出示例3

Second

数据规模及约定

\(1 \le N \le 10^5\)

\(1 \le Ai \le 10^9\)

The greatest common divisor of the integers from \(A_1\) through \(A_N\) is \(1\).

题解

可能考虑奇偶性是一类博弈问题的思路吧。

首先,如果开始时全是奇数,注意到每次操作不会改变数的奇偶性,所以先手一定会将一个奇数变成偶数,那么后手就可以将这个偶数变回奇数,直到最终都变成了 \(1\)(全是奇数),所以后手必胜。

类似地,可以推广出:奇数个偶数,先手必胜;偶数个偶数,后手必胜。

但是有一个小 bug,如果开始时只有一个奇数,那么就不一定了,因为先手可能将那个奇数变成偶数,然后除以一下公约数,变成一个新局面。

当然这种情况很好处理,直接暴力模拟,直到“只有一个奇数”的局面消失,或者变成了全 \(1\) 序列,模拟次数不会超过 \(log_2max\{A_i\}\)。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std; int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 100010 int n, ceven, A[maxn]; int gcd(int a, int b) { return b ? gcd(b, a % b) : a; } int main() {
int sum = 0; bool has1 = 0, cur = 0;
n = read();
for(int i = 1; i <= n; i++) A[i] = read(), ceven += !(A[i] & 1), has1 |= (A[i] == 1), (sum += A[i] - 1) &= 1; if(has1) return puts(sum ? "First" : "Second"), 0;
if(ceven & 1) return puts("First"), 0;
if(n - ceven > 1) return puts("Second"), 0;
for(; ;) {
cur ^= 1;
for(int i = 1; i <= n; i++) if(A[i] & 1) A[i]--;
int g = A[1];
for(int i = 2; i <= n; i++) g = gcd(g, A[i]);
ceven = sum = has1 = 0;
for(int i = 1; i <= n; i++) A[i] /= g, ceven += !(A[i] & 1), has1 |= (A[i] == 1), (sum += A[i] - 1) &= 1;
if(has1) return puts((sum ^ cur) ? "First" : "Second"), 0;
if(n - ceven > 1) return puts(((ceven & 1) ^ cur) ? "First" : "Second"), 0;
} return 0;
}

[AtCoderContest010D]Decrementing的更多相关文章

  1. AGC010 - D: Decrementing

    原题链接 题意简述 给出一个个数的序列,足够聪明的AB两人轮流进行以下操作: 令一个大于1的数减1,然后所有数除以. 如果一个人不能操作了,那么他就输了. 输入保证所有数都是正整数并且. 分析 这是一 ...

  2. Agc010_D Decrementing

    今天本人因调了上篇博客的题而脑壳不适,不想颓题,因此有了这篇博客. 但是博客毕竟得讲点什么,想想有没有什么代码短的. 哦,好像有,就Agc010_D Decrementing好了. Alice和Bob ...

  3. AGC 010D.Decrementing(博弈)

    题目链接 \(Description\) 给定\(n\)个数\(A_i\),且这\(n\)个数的\(GCD\)为\(1\).两个人轮流进行如下操作: 选择一个\(>1\)的数使它\(-1\). ...

  4. 【AGC010D】Decrementing

    Solution 日常博弈论做不出来. 首先,数值全部为1的局面先手必败. 在接下来的过程中,我们只关注那些大于1的数值. 按照官方题解的思路,首先想一个简化版的问题:没有除的操作,其余相同.那么局面 ...

  5. AtCoder Grand Contest 010 D - Decrementing

    题目描述 有n个整数,其中第i个数为Ai.这些数字的gcd为1.两人轮流操作,每次操作把一个大于1的数减1,并把所有数除以所有数的最大公约数,最后无法操作者输,求是否先手必胜. 如果当前的sum为偶数 ...

  6. AT2305-[AGC010D]Decrementing【博弈论】

    正题 题目链接:https://www.luogu.com.cn/problem/AT2305 题目大意 \(n\)个数字两个人进行博弈,每个人的操作为 选择一个大于1的数字减一 之后所有数字除以所有 ...

  7. ExtJS 4.2 Date组件扩展:添加清除按钮

    ExtJS中除了提供丰富的组件外,我们还可以扩展他的组件. 在这里,我们将在Date日期组件上添加一个[清除]按钮,用于此组件已选中值的清除. 目录 1. Date组件介绍 2. 主要代码说明 3. ...

  8. [LeetCode] Minimum Moves to Equal Array Elements II 最少移动次数使数组元素相等之二

    Given a non-empty integer array, find the minimum number of moves required to make all array element ...

  9. How to step through your code in chrome

    By executing code one line or one function at a time, you can observe changes in the data and in the ...

随机推荐

  1. [VC]关于ocx控件的自己编写的dll问题

    要是无法删除c:windows/cownloadprogrames下的文件时可以关掉所有的浏览器,然后在internate----程序---管理 加载项里 先把那个加载项 更新一下,或者禁用一下,或者 ...

  2. nodejs安装遇到npm命令无法使用问题

    解决方法: 在用户文件夹中建立npm文件夹就可以使用了. 再使用npm命令就可以了.

  3. datatable css not work

    样式不显示问题 无论是放内联样式文件还是直接放HTML文件都不显示 后来发现是因为datatable是放在后面初始化,它自带的样式覆盖了我们自定义的样式 所以要注意写code时,很多时候不是code不 ...

  4. Mac配置gdb的一些问题

    1.Unable to find Mach task port for process-id 1527: (os/kern) failure (0x5).   (please check gdb is ...

  5. 08GNU as汇编

    1. 概述 ​ 由于操作系统许多关键代码要求有很高的执行速度和效率,因此在一个操作系统源代码中通常就会包含大约 10% 左右的起关键作用的汇编语言程序量.Linux 操作系统也不例外,它的 32 位初 ...

  6. destoon 配置文件config.inc.php参数说明

    $CFG['db_host']数据库服务器,可以包括端口号,一般为localhost $CFG['db_user']数据库用户名,一般为root $CFG['db_pass']数据库密码 $CFG[' ...

  7. 记一次header跨域与cookie共享

       最近把左边的传统模式,换成了右边通过js直接调api拿数据并渲染,于是变出现了ajax的跨域问题:XMLHttpRequest cannot load http://api.abc.com/?s ...

  8. matplotlib学习记录 四

    # 绘制3月每天最高温和10月每天最高温散点图 from matplotlib import pyplot as plt # 让matplotlib能够显示中文 plt.rcParams['font. ...

  9. 创建Django项目并将其部署在腾讯云上

    这段时间在做scrapy爬虫,对爬出来的数据基于Django做了统计与可视化,本想部署在腾讯云上玩玩,但是因为以前没有经验遇到了一些问题,在这里记录一下: 首先说下Django的创建与配置: 1. 创 ...

  10. MVC&JQuery如何根据List动态生成表格

    背景:在编码中,常会遇到根据Ajax的结果动态生成Table的情况,本篇进行简要的说明.这已经是我第4.5篇和Ajax有关的随笔了,互相之间有很多交叠的地方,可自行参考. 后台代码如下: public ...