设f[0/1][x]为区间[1,x]的根向下 不选(0)或者选(1)  的dp pair<最优值,方案数>。

可以很容易的发现总状态数就是log级别的,因为2*n 与 (2*n+1 或者 2*n-1) 向下有很多重叠,记忆化搜索即可。

初始化的话 f[0][1] = {0,1}, f[1][1] = {0,0} ,切记后者的方案数不能为1,不仅与事实不符,也会与前者重叠。

#include<bits/stdc++.h>
#include<tr1/unordered_map>
using namespace std;
using namespace std::tr1;
#define ll long long
const int ha=998244353;
inline void ADD(int &x,int y){ x+=y; if(x>=ha) x-=ha;}
struct node{
ll M; int S;
node operator +(const node &u)const{
node r=u;
if(M>r.M) r=*this;
else if(M==r.M) ADD(r.S,S);
return r;
}
node operator *(const node &u)const{
return (node){M+u.M,S*(ll)u.S%ha};
}
}A,B;
unordered_map<ll,node> f[2]; void dp(ll x){
if(f[0].count(x)) return;
ll mid=x>>1;
dp(mid),dp(x-mid); f[0][x]=(f[0][mid]+f[1][mid])*(f[0][x-mid]+f[1][x-mid]);
f[1][x]=f[0][mid]*f[1][x-mid]*A+f[1][mid]*f[0][x-mid]*A+f[0][mid]*f[0][x-mid]*B;
} int main(){
f[0][1]=(node){0,1},f[1][1]=(node){0,0};
A=(node){1,1},B=(node){1,2};
ll n; scanf("%lld",&n),dp(n);
node ans=f[0][n]+f[1][n];
printf("%lld %d\n",ans.M,ans.S);
return 0;
}

  

bzoj 5123: [Lydsy1712月赛]线段树的匹配的更多相关文章

  1. 【bzoj5123】[Lydsy12月赛]线段树的匹配 树形dp+记忆化搜索

    题目描述 求一棵 $[1,n]$ 的线段树的最大匹配数目与方案数. $n\le 10^{18}$ 题解 树形dp+记忆化搜索 设 $f[l][r]$ 表示根节点为 $[l,r]$ 的线段树,匹配选择根 ...

  2. bzoj5123 [Lydsy12月赛]线段树的匹配

    题意: 线段树是这样一种数据结构:根节点表示区间 [1, n]:对于任意一个表示区间 [l, r] 的节点,若 l < r, 则取 mid = ⌊l+r/2⌋,该节点的左儿子为 [l, mid] ...

  3. Bzoj 2752 高速公路 (期望,线段树)

    Bzoj 2752 高速公路 (期望,线段树) 题目链接 这道题显然求边,因为题目是一条链,所以直接采用把边编上号.看成序列即可 \(1\)与\(2\)号点的边连得是. 编号为\(1\)的点.查询的时 ...

  4. BZOJ 4881: [Lydsy1705月赛]线段游戏 动态规划 + 线段树

    Description quailty和tangjz正在玩一个关于线段的游戏.在平面上有n条线段,编号依次为1到n.其中第i条线段的两端点坐 标分别为(0,i)和(1,p_i),其中p_1,p_2,. ...

  5. BZOJ.3938.Robot(李超线段树)

    BZOJ UOJ 以时间\(t\)为横坐标,位置\(p\)为纵坐标建坐标系,那每个机器人就是一条\(0\sim INF\)的折线. 用李超线段树维护最大最小值.对于折线分成若干条线段依次插入即可. 最 ...

  6. BZOJ.1558.[JSOI2009]等差数列(线段树 差分)

    BZOJ 洛谷 首先可以把原序列\(A_i\)转化成差分序列\(B_i\)去做. 这样对于区间加一个等差数列\((l,r,a_0,d)\),就可以转化为\(B_{l-1}\)+=\(a_0\),\(B ...

  7. CF308C-Sereja and Brackets-(线段树+括号匹配)

    题意:给出一段括号,多次询问某个区间内能匹配多少括号. 题解:线段树,结构体三个属性,多余的左括号l,多余的右括号r,能够匹配的括号数val. 当前结点的val=左儿子的val+右儿子的val+min ...

  8. BZOJ 3779: 重组病毒(线段树+lct+树剖)

    题面 escription 黑客们通过对已有的病毒反编译,将许多不同的病毒重组,并重新编译出了新型的重组病毒.这种病毒的繁殖和变异能力极强.为了阻止这种病毒传播,某安全机构策划了一次实验,来研究这种病 ...

  9. BZOJ 3123 森林(函数式线段树)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3123 题意: 思路:总的来说,查询区间第K小利用函数式线段树的减法操作.对于两棵树的合并 ...

随机推荐

  1. Django补充知识点——用户管理

    内容概要 1.Form表单2.Ajax3.布局,Django母板4.序列化5.Ajax相关6.分页7.XSS攻击8.CSRF9.CBV.FBV 10.类中用装饰器的两种方法 11.上传文件 12.数据 ...

  2. IOS开发学习笔记032-UITableView 的编辑模式

    UITableView 的三种编辑模式 1.删除 2.排序 3.添加 进入编辑模式,需要设置一个参数 - (IBAction)remove:(UIBarButtonItem *)sender { NS ...

  3. Windows网络编程笔记1

    第一部分 传统网络API 传统的网络接口NetBIOS.重定向器.邮槽.命名管道等.第一,NetBIOS(Network Basic Input/Output System, NetBIOS)“网络基 ...

  4. LeetCode661图片平滑器

    题目描述:包含整数的二维矩阵 M 表示一个图片的灰度.你需要设计一个平滑器来让每一个单元的灰度成为平均灰度 (向下舍入) ,平均灰度的计算是周围的8个单元和它本身的值求平均,如果周围的单元格不足八个, ...

  5. Halcon18 Linux For Armv7a 下载

    Halcon18 Linux For Armv7a 下载地址:http://www.211xun.com/download_page_16.html HALCON 18 是一套机器视觉图像处理库,由一 ...

  6. [oldboy-django][2深入django]MVC&MTV

    # MVC和MTV MVC = models(数据库) + views(模板html) + controllers(业务逻辑处理) MTV = models(数据库) + template(模板htm ...

  7. AngularJs MVC 详解

    为什么在前端也需要MVC 1.代码规模越来越大,切分职责是大势所趋 2.为了复用 3.为了后期维护方便 MVC的目的是为了模块化和复用 前端实现MVC的困难 1.操作DOM必须等整个页面加载完 2.多 ...

  8. [NOI2012][bzoj2879] 美食节 [费用流+动态加边]

    题面 传送门 思路 先看看这道题 修车 仔细理解一下,这两道题是不是一样的? 这道题的不同之处 但是有一个区别:本题中每一种车有多个需求,但是这个好办,连边的时候容量涨成$p\lbrack i\rbr ...

  9. Fabric 和 Sawtooth 技术分析(下)

    http://blog.talkingdata.com/?p=6172 在前一篇文章(Fabric和Sawtooth技术分析(上))中,我们着重跟大家分享了 Fabric 相关的内容,在本篇文章中,我 ...

  10. windows server 2008 密码破解

    个人是不太喜欢windows 系统的,但有时候没办法  业务已经用在Windows系统上面,今天碰到管理员密码还忘记了的情况,在此记录下 破解密码的过程 1.下载小白菜装机版u盘制作PE启动,详情参考 ...