洛谷——P2626 斐波那契数列(升级版)
P2626 斐波那契数列(升级版)
题目背景
大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)。
题目描述
请你求出第n个斐波那契数列的数mod(或%)2^31之后的值。并把它分解质因数。
输入输出格式
输入格式:
n
输出格式:
把第n个斐波那契数列的数分解质因数。
输入输出样例
5
5=5
6
8=2*2*2
说明
n<=48
矩阵乘法加速斐波那契+质因数分解
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
<<;
int n,answer,s;
struct Node
{
][];
Node(){memset(m,,sizeof(m));}
}mb,ans;
Node operator*(Node a,Node b)
{
Node c;
;i<=;i++)
;j<=;j++)
;k<=;k++)
c.m[i][j]=(c.m[i][j]%mod+a.m[i][k]*b.m[k][j]%mod)%mod;
return c;
}
int read()
{
,f=; char ch=getchar();
;ch=getchar();}
+ch-',ch=getchar();
return x*f;
}
int main()
{
n=read();
ans.m[][]=ans.m[][]=;
mb.m[][]=mb.m[][]=mb.m[][]=;
while(n)
{
) ans=ans*mb;
mb=mb*mb;n>>=;
}
answer=ans.m[][];
printf("%d=",answer);
;i<=answer;i++)
{
)
{
s++;answer/=i;
) printf("*");
printf("%d",i);
}
}
;
}
洛谷——P2626 斐波那契数列(升级版)的更多相关文章
- 洛谷——P2626 斐波那契数列(升级版)矩阵
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...
- 洛谷 P2626 斐波那契数列(升级版)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...
- [洛谷P2626]斐波那契数列(升级版)
题目大意:请你求出第$n$个斐波那契数列的数$mod 2^{31}$之后的值.并把它分解质因数. 题解:乱搞 卡点:1.忘记取模 C++ Code: #include<cstdio> #i ...
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 洛谷——P1962 斐波那契数列
P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...
- 洛谷—— P1962 斐波那契数列
https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 洛谷P1962 斐波那契数列题解
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
随机推荐
- python之时间处理time模块
import time import datetime ''' print(time.time()) #返回当前系统时间戳 print(time.ctime()) #返回当前系统时间 print(ti ...
- 2190: [SDOI2008]仪仗队(欧拉函数)
2190: [SDOI2008]仪仗队 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3235 Solved: 2089 Description 作 ...
- 45、gridview在改变位置之后无法完整显示的问题记录
gridview的父布局为layoutFather,gridview id为 layoutGridview layoutFather 高度设置为130dp layoutGridview高度设置为1 ...
- 成都大学CTF 网络攻防演练平台 WP
web1 输入框那里鼠标右键,审查元素,删除maxlength web2 http://ctf.cdusec.org:8082/web2/?cdusec=tql web3 同上,用火狐hackbar或 ...
- backpropagation算法示例
backpropagation算法示例 下面举个例子,假设在某个mini-batch的有样本X和标签Y,其中\(X\in R^{m\times 2}, Y\in R^{m\times 1}\),现在有 ...
- tomcat 服务不支持 chkconfig 以及其他服务不能添加到开机启动时的操作
在安装完tomcat后想添加的开机自启动的操作,但是报错tomcat 服务不支持 chkconfig,后来在 /etc/init.d/tomcat中的#!/bin/bash后添加上#chkconfi ...
- Struts2拦截器原理
拦截器是struts2处理的核心,本文主要说struts2的拦截器的基本原理/实现,其它框架处理的东西就不说了,得自己再看了.struts2版本:2.2.3当一个请求来了后,从org.apache.s ...
- SQLSERVER 数据库基础操作
1.修改表中字段的长度,类型为varchar,从30改到50 语句执行(注:当前为30): alter table 表名 alter column 列名 varchar(50) 2.增加 ...
- [ZJOI2014][bzoj3527]力 [FFT]
题面 传送门 思路 把要求的公式列出来: $E_i=\frac{F_i}{q_i}=\sum_{j=1}^i\frac{q_j}{\left(i-j\right)^2}-\sum_{j=i+1}^n\ ...
- [HEOI2014][bzoj3611] 大工程 [虚树+dp]
题面: 传送门 思路: 又是一道虚树入门级的题目,但是这道题的实际难点在于dp 首先,这道题是可以点分治做的,而且因为6s时限随便浪,所以写点分治也不是不可以 但是,dp因为$O\left(n\rig ...