洛谷——P2626 斐波那契数列(升级版)
P2626 斐波那契数列(升级版)
题目背景
大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)。
题目描述
请你求出第n个斐波那契数列的数mod(或%)2^31之后的值。并把它分解质因数。
输入输出格式
输入格式:
n
输出格式:
把第n个斐波那契数列的数分解质因数。
输入输出样例
5
5=5
6
8=2*2*2
说明
n<=48
矩阵乘法加速斐波那契+质因数分解
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
<<;
int n,answer,s;
struct Node
{
][];
Node(){memset(m,,sizeof(m));}
}mb,ans;
Node operator*(Node a,Node b)
{
Node c;
;i<=;i++)
;j<=;j++)
;k<=;k++)
c.m[i][j]=(c.m[i][j]%mod+a.m[i][k]*b.m[k][j]%mod)%mod;
return c;
}
int read()
{
,f=; char ch=getchar();
;ch=getchar();}
+ch-',ch=getchar();
return x*f;
}
int main()
{
n=read();
ans.m[][]=ans.m[][]=;
mb.m[][]=mb.m[][]=mb.m[][]=;
while(n)
{
) ans=ans*mb;
mb=mb*mb;n>>=;
}
answer=ans.m[][];
printf("%d=",answer);
;i<=answer;i++)
{
)
{
s++;answer/=i;
) printf("*");
printf("%d",i);
}
}
;
}
洛谷——P2626 斐波那契数列(升级版)的更多相关文章
- 洛谷——P2626 斐波那契数列(升级版)矩阵
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...
- 洛谷 P2626 斐波那契数列(升级版)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...
- [洛谷P2626]斐波那契数列(升级版)
题目大意:请你求出第$n$个斐波那契数列的数$mod 2^{31}$之后的值.并把它分解质因数. 题解:乱搞 卡点:1.忘记取模 C++ Code: #include<cstdio> #i ...
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 洛谷——P1962 斐波那契数列
P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...
- 洛谷—— P1962 斐波那契数列
https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 洛谷P1962 斐波那契数列题解
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
随机推荐
- 快速排序算法(C)
sort快排函数的基本版,效率n*logn,快排的完全版就是在递归之中夹杂对序列的预判断,最优的选择排序方法,快速排序算法只是其中之一. 简单的说明一下快速排序的思想,对于一个数列,首先选择一个基数( ...
- Nodejs-模块化结构
1.模块(一个文件就是一个模块) 获取当前脚本所在的路径 _ _dirname 文件路径 _ _filename (1)创建模块(module1.js) const fs=require('fs'); ...
- BugKu-妹子的陌陌
打开后看这张图片,先放winhex里面,文件头FFD8,是jpg图片.看文件尾并不是FFD9,所以binwalk分析一下. 发现有一个rar文件,然后用foremost分离.发现里面有个加密的rar文 ...
- 【转】behave行为树学习使用第一天
最近在学习使用行为树做AI,决定把学到的贡献出来,抛砖引玉,希望可以认识到更多大牛 -- 首先我们了解下什么是行为树和为什么要使用行为树. 在我们项目中如果需要做一个AI敌人,比如做一个手游 某民 ...
- 【bzoj4066】简单题 KD-tree
题目描述 你有一个N*N的棋盘,每个格子内有一个整数,初始时的时候全部为0,现在需要维护两种操作: 命令 参数限制 内容 1 x y A 1<=x,y<=N,A是正整数 将格子x,y里的数 ...
- BZOJ-2618 [CQOI2006]凸多边形
半平面交模版题.. #include <cstdlib> #include <cstdio> #include <cmath> #include <cstri ...
- php中memcache扩展及memcached扩展的区别
1.目前大多数php环境里使用的都是不带d的memcache版本,这个版本出的比较早,是一个原生版本,完全在php框架内开发的.与之对应的带d的memcached是建立在libmemcached的基础 ...
- 多啦A梦的制作
小叮当简单颜色单一,操作起来也很容易上手.接下来的一个实例就是用css画出一个多啦A梦,首先将其分为头部,和身体.然后,再根据身体各部分细节进行进一步的具体刻画. 由于最近一直在学习JavaWeb方面 ...
- [暑假集训--数论]poj1595 Prime Cuts
A prime number is a counting number (1, 2, 3, ...) that is evenly divisible only by 1 and itself. In ...
- webpack最佳入门实践系列(1)
1.webpack简介 webpack 是一个现代 JavaScript 应用程序的模块打包器(module bundler).它可以将许多松散的模块按照依赖和规则打包成符合生产环境部署的前端资源 1 ...