机器学习:Principal components analysis (主分量分析)
Principal components analysis
这一讲,我们简单介绍Principal Components Analysis(PCA),这个方法可以用来确定特征空间的子空间,用一种更加紧凑的方式(更少的维数)来表示原来的特征空间。假设我们有一组训练集{x(i);i=1,...m},含有m个训练样本,每一个训练样本x(i)∈Rn,其中(n≪m),每一个n维的训练
样本意味着有n个属性,一般来说,这n个属性里面,会有很多是存在一定相关性的,也就是很多属性是冗余的,这就为特征的降维提供了可能,关键是如何确定多余的属性以及如何进行降维。
PCA为这个问题提供了一种解决途径,在做PCA之前,我们要先对数据做如下的预处理:
1: 求出训练集的均值向量:μ=1m∑mi=1x(i).
2: 用每一个训练样本减去均值向量,x(i)=x(i)−μ.
3: 求出变换后的训练集的方差:σ2j=1m∑i(x(i)j)2.
4: 再将训练集的样本做如下替换:x(i)j=x(i)j/σj.
上面的第1,2步确保了训练集的均值为0,第3,4步保证了训练集的方差为1,使得训练样本里的不同属性变换到同一个尺度上处理。给定一个单位向量u和一个点x,那么该点x到单位向量的投影的长度为xTu,如果x(i)是训练集里的一个样本,那么它在u上的投影长度即为xTu到原点的距离,因此,为了能够让这些投影之间的方差最大,我们希望找到满足如下表达式的单位向量u。
因为u是单位向量,所以∥u∥2=1,上式括号中的表达式即为均值为0的协方差矩阵(Σ=1m∑mi=1x(i)(x(i))T),为了使目标函数最大化,则u应该取Σ最大的特征值所对应的特征向量。
总之,我们应该取Σ的主特征向量,如果我们希望将原来的数据空间映射到一个低维的子空间,我们可以选择Σ的前k个特征向量作为子空间的基向量,那么这k个特征向量u1,u2,...uk组成了新空间的基向量。那么我们可以将原来的训练样本x(i)映射到新的特征空间:
因此,虽然x(i)是一个n维的向量,但是y(i)变成了维数更低的向量,所以PCA是一种降维算法,其中特征向量u1,u2,...uk称为训练集的
前k个主分量。
参考来源:
Andrew Ng, “Machine Learning”, Stanford University.
机器学习:Principal components analysis (主分量分析)的更多相关文章
- principal components analysis 主成份分析
w http://deeplearning.stanford.edu/wiki/index.php/主成份分析 主成分分析(PCA)及其在R里的实现 - jicf的日志 - 网易博客 http:// ...
- Principal components analysis(PCA):主元分析
在因子分析(Factor analysis)中,介绍了一种降维概率模型,用EM算法(EM算法原理详解)估计参数.在这里讨论另外一种降维方法:主元分析法(PCA),这种算法更加直接,只需要进行特征向量的 ...
- Andrew Ng机器学习公开课笔记–Principal Components Analysis (PCA)
网易公开课,第14, 15课 notes,10 之前谈到的factor analysis,用EM算法找到潜在的因子变量,以达到降维的目的 这里介绍的是另外一种降维的方法,Principal Compo ...
- PCA-主成分分析(Principal components analysis)
来自:刘建平 主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一. 1. PCA的思想 PCA顾名思义,就是找出数据里最主要的方面,用数据里 ...
- Jordan Lecture Note-9: Principal Components Analysis (PCA).
Principal Components Analysis (一)引入PCA 当我们对某个系统或指标进行研究时往往会发现,影响这些系统和指标的因素或变量的数量非常的多.多变量无疑会为科学研究带来 ...
- Stat2—主成分分析(Principal components analysis)
最近在猛撸<R in nutshell>这本课,统计部分涉及的第一个分析数据的方法便是PCA!因此,今天打算好好梳理一下,涉及主城分析法的理论以及R实现!come on…gogogo… 首 ...
- A tutorial on Principal Components Analysis | 主成分分析(PCA)教程
A tutorial on Principal Components Analysis 原著:Lindsay I Smith, A tutorial on Principal Components A ...
- 主成分分析 | Principal Components Analysis | PCA
理论 仅仅使用基本的线性代数知识,就可以推导出一种简单的机器学习算法,主成分分析(Principal Components Analysis, PCA). 假设有 $m$ 个点的集合:$\left\{ ...
- 主成分分析(principal components analysis, PCA)
原理 计算方法 主要性质 有关统计量 主成分个数的选取 ------------------------------------------------------------------------ ...
随机推荐
- Android ANR原理分析
一.概述 ANR(Application Not responding),是指应用程序未响应,Android系统对于一些事件需要在一定的时间范围内完成,如果超过预定时间能未能得到有效响应或者响应时间过 ...
- android -- 存储byte
public static String byteArrayToHexStr(byte[] byteArray) { if (byteArray == null){ return null; } ch ...
- win7 32位配置apache+wsgi+django环境
1下载xampp,里面有apache,mysql,phpmyadmin, 2 下载wsgi,http://download.csdn.net/download/copter/9192361 将对应的模 ...
- Kaggle的Outbrain点击预测比赛分析
https://yq.aliyun.com/articles/293596 https://www.kaggle.com/c/outbrain-click-prediction https://www ...
- nload 命令
网卡 流量监控命令 // 安装 yum intall nload nload 上下page 键 切换网卡查看
- js 宽和高
网页可见区域宽: document.body.clientWidth; 网页可见区域高: document.body.clientHeight; 网页可见区域宽: document.body.offs ...
- 【Access2007】Access2007的打开方式
Access2007提供了多种打开方式 仅仅读与非仅仅读就不用说了,就是能编辑与不可以编辑的差别 是否以独占的方式打开是Access2007的打开方式的核心 这里什么都没有写的打开是指以"共 ...
- windows 平台 ffmeg h264 硬编码
本文讲述windows 平台下ffmpeg如何利用intel media SDK 进行 h264硬编码(测试版本为3.2.2). ffmeg硬编编码的流程与软件编码流程相同,唯一不同的地方在初始化en ...
- 使用 Kingfisher 处理网络图片的读取与缓存
Kingfisher 是一个读取网络图片和处理本地缓存的开源库,由 onevcat 开发.提到图片缓存库,那么熟悉 Objective-C 开发的同学,可能会想起 SDWebImage. 没错,Kin ...
- ajax短信验证码-mvc
<script type="text/javascript"> function SendMessage() { var phoneNumberInput = docu ...