题目链接:http://codeforces.com/contest/922

B. Magic Forest
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Imp is in a magic forest, where xorangles grow (wut?)

A xorangle of order n is such a non-degenerate triangle, that lengths of its sides are integers not exceeding n, and the xor-sum of the lengths is equal to zero. Imp has to count the number of distinct xorangles of order n to get out of the forest.

Formally, for a given integer n you have to find the number of such triples (a, b, c), that:

  • 1 ≤ a ≤ b ≤ c ≤ n;
  • , where  denotes the bitwise xor of integers x and y.
  • (a, b, c) form a non-degenerate (with strictly positive area) triangle.
Input

The only line contains a single integer n (1 ≤ n ≤ 2500).

Output

Print the number of xorangles of order n.

Examples
input

Copy
6
output
1
input

Copy
10
output
2
Note

The only xorangle in the first sample is (3, 5, 6).

题意:

求有多少对(a,b,c)满足:1 ≤ a ≤ b ≤ c ≤ n,且a^b^c = 0,且a、b、c满足三角形的条件。

题解:

1.虽然此题简单,但太久没打过比赛,所以还需要一定的反应时间。

2.一看到题目时,第一想法就是把n写成二进制形式,然后再用类似数位DP的方法统计。但是,这种想法想想就好了。

3.正确做法是枚举 a、b,且要求:a<=b,显然 c = a^b。此时,只需判断c是否满足: b ≤ c ≤ n 且 c<=(a+b-1)即可。

4.时间复杂度:O(n^2)。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e6+; int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
LL ans = ;
for(int i = ; i<=n; i++) //枚举a
for(int j = i; j<=n; j++) //枚举b
if( j<=(i^j) && (i^j)<=min(n,i+j-)) //则c = (a^b),且 b<=c<=a+b-1,满足三角形,且还需c<=n
ans++;
printf("%lld\n",ans);
}
}
C. Cave Painting
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Imp is watching a documentary about cave painting.

Some numbers, carved in chaotic order, immediately attracted his attention. Imp rapidly proposed a guess that they are the remainders of division of a number n by all integers i from 1 to k. Unfortunately, there are too many integers to analyze for Imp.

Imp wants you to check whether all these remainders are distinct. Formally, he wants to check, if all , 1 ≤ i ≤ k, are distinct, i. e. there is no such pair (i, j) that:

  • 1 ≤ i < j ≤ k,
  • , where  is the remainder of division x by y.
Input

The only line contains two integers nk (1 ≤ n, k ≤ 1018).

Output

Print "Yes", if all the remainders are distinct, and "No" otherwise.

You can print each letter in arbitrary case (lower or upper).

Examples
input

Copy
4 4
output
No
input

Copy
5 3
output
Yes
Note

In the first sample remainders modulo 1 and 4 coincide.

题意:

给出n、k,问是否满足所有n%i都唯一,其中 1<=i<=k。

题解:

1.此题自己没有想出来,看题解的。

2.可知:n%1 = 0,如要所有n%i都唯一,那么n%2是能为1,这也使得n%3只能为2,一直推下去,n%i = i-1。

3.根据第二点,只需枚举i,1<=i<=k,看是否存在i不满足n%i == i-1 即可。

4.关于时间复杂度:由于k<=1e18,所以即使是O(n)的时间复杂度也接受不了。但其实能使得n%i == i-1,1<=i<=k 的n、k范围应该都很小,只能说“应该”,证明就不会了。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e5+; int main()
{
LL n, k;
while(scanf("%lld%lld", &n,&k)!=EOF)
{
bool flag = true;
for(int i = ; i<=k; i++)
{
if(n%i!=i-)
{
flag = false;
break;
}
}
if(flag) puts("Yes");
else puts("No");
}
}
D. Robot Vacuum Cleaner
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Pushok the dog has been chasing Imp for a few hours already.

Fortunately, Imp knows that Pushok is afraid of a robot vacuum cleaner.

While moving, the robot generates a string t consisting of letters 's' and 'h', that produces a lot of noise. We define noise of string t as the number of occurrences of string "sh" as a subsequence in it, in other words, the number of such pairs (i, j), that i < j and  and .

The robot is off at the moment. Imp knows that it has a sequence of strings ti in its memory, and he can arbitrary change their order. When the robot is started, it generates the string t as a concatenation of these strings in the given order. The noise of the resulting string equals the noise of this concatenation.

Help Imp to find the maximum noise he can achieve by changing the order of the strings.

Input

The first line contains a single integer n (1 ≤ n ≤ 105) — the number of strings in robot's memory.

Next n lines contain the strings t1, t2, ..., tn, one per line. It is guaranteed that the strings are non-empty, contain only English letters 's' and 'h' and their total length does not exceed 105.

Output

Print a single integer — the maxumum possible noise Imp can achieve by changing the order of the strings.

Examples
input

Copy
4
ssh
hs
s
hhhs
output
18
input

Copy
2
h
s
output
1
Note

The optimal concatenation in the first sample is ssshhshhhs.

题意:

给出n个“sh”串,问怎样把他们拼接在一起,使得凭借后新串的(s,h)对最多?

题解:

1.拿到题目的第一感觉是:对于一个串来说,如果s所占的比例越大,那么它就应该越靠前。

2.如果两个串s所占的比例一样,经过比划了一下,长度较长的那个应该放在前面。

3.得出比较规则之后,就对这n个串进行排序,然后统计即可。

4.对于上述方法,也没有去证明它的正确性,凭感觉大概就这样。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e5+; struct node
{
string s;
double p;
bool operator<(const node &x)const{
if(p==x.p) return s.size()>x.s.size();
else return p>x.p;
}
}a[MAXN]; int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
for(int i = ; i<=n; i++)
{
cin>>a[i].s;
int len = a[i].s.size(), cnt = ;
for(int j = ; j<len; j++)
cnt += (a[i].s[j]=='s');
a[i].p = 1.0*cnt/len;
} sort(a+,a++n);
LL ans = , cnt = ;
for(int i = ; i<=n; i++)
{
int len = a[i].s.size();
for(int j = ; j<len; j++)
{
if(a[i].s[j]=='s') cnt++;
else ans += cnt;
}
}
printf("%lld\n", ans);
}
}

Codeforces Round #461 (Div. 2) B C D的更多相关文章

  1. CF922 CodeForces Round #461(Div.2)

    CF922 CodeForces Round #461(Div.2) 这场比赛很晚呀 果断滚去睡了 现在来做一下 A CF922 A 翻译: 一开始有一个初始版本的玩具 每次有两种操作: 放一个初始版 ...

  2. Codeforces Round #461 (Div. 2)

    A - Cloning Toys /* 题目大意:给出两种机器,一种能将一种原件copy出额外一种原件和一个附件, 另一种可以把一种附件copy出额外两种附件,给你一个原件, 问能否恰好变出题目要求数 ...

  3. Codeforces Round #461 (Div. 2) D. Robot Vacuum Cleaner

    D. Robot Vacuum Cleaner time limit per test 1 second memory limit per test 256 megabytes Problem Des ...

  4. Codeforces Round #461 (Div. 2) C. Cave Painting

    C. Cave Painting time limit per test 1 second memory limit per test 256 megabytes Problem Descriptio ...

  5. Codeforces Round #461 (Div. 2) B. Magic Forest

    B. Magic Forest time limit per test 1 second memory limit per test 256 megabytes Problem Description ...

  6. Codeforces Round #461 (Div. 2) A. Cloning Toys

    A. Cloning Toys time limit per test 1 second memory limit per test 256 megabytes Problem Description ...

  7. Codeforces Round #461 (Div. 2)B-Magic Forest+位运算或优雅的暴力

    Magic Forest 题意:就是在1 ~ n中找三个值,满足三角形的要求,同时三个数的异或运算还要为0: , where  denotes the bitwise xor of integers  ...

  8. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

  9. Codeforces Round #354 (Div. 2) ABCD

    Codeforces Round #354 (Div. 2) Problems     # Name     A Nicholas and Permutation standard input/out ...

随机推荐

  1. StringUtils和IOUtils工具包的使用

    加载apache的工具类 <dependency> <groupId>commons-lang</groupId> <artifactId>common ...

  2. Synchronized与ReentrantLock的区别

    1.ReentrantLock 拥有Synchronized相同的并发性和内存语义,此外还多了 锁投票,定时锁等候和中断锁等候 线程A和B都要获取对象O的锁定,假设A获取了对象O锁,B将等待A释放对O ...

  3. 通用礼品卡接口文档(KFC、必胜客、GAP等)

    通用礼品卡接口文档,集于各商家(KFC.必胜客.GAP等)实体卡和会员卡的API虚拟卡,可用于线上/下消费.移动支付. 1.API 1.1商品列表 接口地址:http://v.juhe.cn/gift ...

  4. java debug

    java debug 模式下各button作用 F5:跳入方法  Step Into F6:向下逐行调试  Step Over F7:跳出方法  Step Return F8:直接跳转到下一个断点 D ...

  5. UNP学习笔记(第十六章 非阻塞I/O)

    套接字的默认状态时阻塞的 可能阻塞的套接字调用可分为以下4类: 1.输入操作,包括read.readv.recv.recvfrom和recvmsg. 2.输入操作,包括write.writev.sen ...

  6. css:html() text() val()

    转http://www.jb51.net/article/35867.htm .html()用为读取和修改元素的HTML标签    对应js中的innerHTML .html()是用来读取元素的HTM ...

  7. .net 定时执行 windows 服务

    1.新建项目 --> Windows 服务 2.Service1.cs代码 using System; using System.Collections.Generic; using Syste ...

  8. Java 命名规则

    http://lpacec.iteye.com/blog/25180包名:包名是全小写的名词,中间可以由点分隔开,例如:java.awt.event; 类名:首字母大写,通常由多个单词合成一个类名,要 ...

  9. sudo apt-get update 没有公钥,无法验证下列签名

    在更新系统源后,输入sudo apt-get update之后出现提示: W: GPG 错误:http://archive.ubuntukylin.com:10006 xenial InRelease ...

  10. scapy windows install

    最近有点扫描网络的需求,都说scapy好,但是安装是个事(当然指的是windows安装)有个scapy3k,支持python3,可惜需要powershell,也就是说windows xp是没有戏了. ...