P3372 【模板】线段树 1

题目描述

如题,已知一个数列,你需要进行下面两种操作:

1.将某区间每一个数加上x

2.求出某区间每一个数的和

输入输出格式

输入格式:

第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。

第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。

接下来M行每行包含3或4个整数,表示一个操作,具体如下:

操作1: 格式:1 x y k 含义:将区间[x,y]内每个数加上k

操作2: 格式:2 x y 含义:输出区间[x,y]内每个数的和

输出格式:

输出包含若干行整数,即为所有操作2的结果。

输入输出样例

输入样例#1:

5 5
1 5 4 2 3
2 2 4
1 2 3 2
2 3 4
1 1 5 1
2 1 4
输出样例#1:

11
8
20

说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=8,M<=10

对于70%的数据:N<=1000,M<=10000

对于100%的数据:N<=100000,M<=100000

(数据已经过加强^_^,保证在int64/long long数据范围内)

样例说明:

/*感觉好久没写线段树了,这是一个只牵扯到区间修改和区间查询的线段树模板,需要用懒标记,别忘开longlong*/
#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
ll n,m,opx,opy,opv,ans;
struct node{
ll lazy,v,l,r;
}tr[*];
void build(int l,int r,int k){
tr[k].l=l;tr[k].r=r;
if(tr[k].l==tr[k].r){
scanf("%lld",&tr[k].v);
return;
}
int mid=(l+r)/;
build(l,mid,k*);
build(mid+,r,k*+);
tr[k].v=tr[k*].v+tr[k*+].v;
}
void down(int k){
ll v=tr[k].lazy;
tr[k*].v+=v*(tr[k*].r-tr[k*].l+);
tr[k*].lazy+=v;
tr[k*+].v+=v*(tr[k*+].r-tr[k*+].l+);
tr[k*+].lazy+=v;
tr[k].lazy=;
}
void add(int k){
if(tr[k].l>=opx&&tr[k].r<=opy){
tr[k].v+=opv*(tr[k].r-tr[k].l+);
tr[k].lazy+=opv;
return;
}
if(tr[k].lazy)down(k);
ll m=(tr[k].l+tr[k].r)/;
if(opx<=m)add(k*);
if(opy>m)add(k*+);
tr[k].v=tr[k*].v+tr[k*+].v;
}
void ask(int k){
if(tr[k].l>=opx&&tr[k].r<=opy){
ans+=tr[k].v;
return;
}
if(tr[k].lazy)down(k);
int m=(tr[k].l+tr[k].r)/;
if(opx<=m)ask(k*);
if(opy>m)ask(k*+);
}
int main(){
scanf("%lld%lld",&n,&m);
build(,n,);int x;
for(ll i=;i<=m;i++){
scanf("%d",&x);
if(x==){
scanf("%d%d%lld",&opx,&opy,&opv);
add();
}
if(x==){
ans=;
scanf("%d%d",&opx,&opy);
ask();
printf("%lld\n",ans);
}
}
}

洛谷 P3372 【模板】线段树 1的更多相关文章

  1. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  2. 洛谷 - P1198 - 最大数 - 线段树

    https://www.luogu.org/problemnew/show/P1198 要问区间最大值,肯定是要用线段树的,不能用树状数组.(因为没有逆元?但是题目求的是最后一段,可以改成类似前缀和啊 ...

  3. 洛谷 P2391 白雪皑皑 线段树+优化

    题目描述: 现在有 \(N\) 片雪花排成一列. Pty 要对雪花进行$ M $次染色操作,第 \(i\)次染色操作中,把\((i*p+q)%N+1\) 片雪花和第\((i*q+p)%N+1\)片雪花 ...

  4. 【洛谷】【线段树】P1471 方差

    [题目背景:] 滚粗了的HansBug在收拾旧数学书,然而他发现了什么奇妙的东西. [题目描述:] 蒟蒻HansBug在一本数学书里面发现了一个神奇的数列,包含N个实数.他想算算这个数列的平均数和方差 ...

  5. 【洛谷】【线段树】P1047 校门外的树

    [题目描述:] 某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米.我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置:数轴上的每个整数点,即0,1,2,……,L ...

  6. 【洛谷】【线段树】P1886 滑动窗口

    [题目描述:] 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口.现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的最大值和最小值. [输入格式:] 输入一共 ...

  7. 【洛谷】【线段树】P3353 在你窗外闪耀的星星

    [题目描述:] /* 飞逝的的时光不会模糊我对你的记忆.难以相信从我第一次见到你以来已经过去了3年.我仍然还生动地记得,3年前,在美丽的集美中学,从我看到你微笑着走出教室,你将头向后仰,柔和的晚霞照耀 ...

  8. 洛谷P5280 [ZJOI2019]线段树

      https://www.luogu.org/problemnew/show/P5280 省选的时候后一半时间开这题,想了接近两个小时的各种假做法,之后想的做法已经接近正解了,但是有一些细节问题理不 ...

  9. 洛谷P3374(线段树)(询问区间和,支持单点修改)

    洛谷P3374 //询问区间和,支持单点修改 #include <cstdio> using namespace std; ; struct treetype { int l,r,sum; ...

  10. 洛谷 P5280 - [ZJOI2019]线段树(线段树+dp,神仙题)

    题面传送门 神仙 ZJOI,不会做啊不会做/kk Sooke:"这八成是考场上最可做的题",由此可见 ZJOI 之毒瘤. 首先有一个非常显然的转化,就是题目中的"将线段树 ...

随机推荐

  1. 扫盲-wpf依赖属性

    一.什么是依赖属性 依赖属性就是一种自己可以没有值,并且可以通过绑定从其他数据源获取值.依赖属性可支持WPF中的样式设置.数据绑定.继承.动画及默认值. 将所有的属性都设置为依赖属性并不总是正确的解决 ...

  2. Java一致性的实现

    一致性     内存模型 每一个线程有一个工作内存和主存独立 工作内存存放主存中变量的值的拷贝     Happen Before 1.程序次序规则:在一个单独的线程中,按照程序代码的执行流顺序,(时 ...

  3. debian7配置

    输入法: apt-get install ibus ibus-pinyin 并执行ibus-setup进行配置,首选项->输入法->中文,然后按添加按钮即可. 软件开发基本软件:apt-g ...

  4. ZOJ3228 Searching the String —— AC自动机 + 可重叠/不可重叠

    题目链接:https://vjudge.net/problem/ZOJ-3228 Searching the String Time Limit: 7 Seconds      Memory Limi ...

  5. 【css学习整理】css基础(样式,语法,选择器)

    CSS是什么? cascading 层叠样式表 sheet 样式文件 style 外观个性化 CSS语法? 声明方法: 选择器(属性: 值; 属性: 值) 选择器: 通过名称制定对哪些标签进行样式设置 ...

  6. Struts2 输入校验 第四弹

    ActionSupport 里面有一个validate.可以重写里面你的方法. 校验执行流程: 1)首先进行类型转化 2)然后进行输入校验(执行validate方法) 3)如果在上述过程中出现了任何错 ...

  7. tensorflow实现svm多分类 iris 3分类——本质上在使用梯度下降法求解线性回归(loss是定制的而已)

    # Multi-class (Nonlinear) SVM Example # # This function wll illustrate how to # implement the gaussi ...

  8. [原创]Java集成PageOffice在线打开编辑word文件 - Spring Boot

    开发环境:JDK1.8.Eclipse.Sping Boot + Thymeleaf框架. 一. 构建Sping Boot + Thymeleaf框架的项目(不再详述): 1. 新建一个maven p ...

  9. 理解多线程中的ManualResetEvent(C#)

    线程是程序中的控制流程的封装.你可能已经习惯于写单线程程序,也就是,程序在它们的代码中一次只在一条路中执行.如果你多弄几个线程的话,代码运行可能会更加“同步”.在一个有着多线程的典型进程中,零个或更多 ...

  10. Unix环境编程之文件IO

    1.文件IO 2.文件与目录 3.进程 4.多线程编程 5.信号 6.进程间通信 学习linux编程,首先要学会使用shell,这里一些基础命令就不介绍了.这里唯一要提的一个shell命令就是man. ...