原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4349

Xiao Ming's Hope

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1723    Accepted Submission(s): 1144

Problem Description
Xiao Ming likes counting numbers very much, especially he is fond of counting odd numbers. Maybe he thinks it is the best way to show he is alone without a girl friend. The day 2011.11.11 comes. Seeing classmates walking with their girl friends, he coundn't help running into his classroom, and then opened his maths book preparing to count odd numbers. He looked at his book, then he found a question "C(n,0)+C(n,1)+C(n,2)+...+C(n,n)=?". Of course, Xiao Ming knew the answer, but he didn't care about that , What he wanted to know was that how many odd numbers there were? Then he began to count odd numbers. When n is equal to 1, C(1,0)=C(1,1)=1, there are 2 odd numbers. When n is equal to 2, C(2,0)=C(2,2)=1, there are 2 odd numbers...... Suddenly, he found a girl was watching him counting odd numbers. In order to show his gifts on maths, he wrote several big numbers what n would be equal to, but he found it was impossible to finished his tasks, then he sent a piece of information to you, and wanted you a excellent programmer to help him, he really didn't want to let her down. Can you help him?
 
Input
Each line contains a integer n(1<=n<=108)
 
Output
A single line with the number of odd numbers of C(n,0),C(n,1),C(n,2)...C(n,n).
 
Sample Input
1
2
11
 
Sample Output
2
2
8
 
Author
HIT
 
Source
 
Recommend
zhuyuanchen520

题意

给你个n,问你第n行的二项式系数中有多少个奇数项。

题解

就打打表找规律,发现答案就是n的二进制中1的个数的二的幂。

代码

#include<cstdio>
#include<bitset>
int n;
int main(){
while(scanf("%d",&n)==){
std::bitset<> bi(n);
printf("%d\n",<<(bi.count()));
}
return ;
}

HDU 4349 Xiao Ming's Hope 找规律的更多相关文章

  1. hdu 4349 Xiao Ming's Hope 规律

    Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  2. HDU 4349 Xiao Ming's Hope lucas定理

    Xiao Ming's Hope Time Limit:1000MS     Memory Limit:32768KB  Description Xiao Ming likes counting nu ...

  3. HDU 4349——Xiao Ming's Hope——————【Lucas定理】

    Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. HDU 4349 Xiao Ming&#39;s Hope

    非常无语的一个题. 反正我后来看题解全然不是一个道上的. 要用什么组合数学的lucas定理. 表示自己就推了前面几个数然后找找规律. C(n, m) 就是 组合n取m: (m!(n-m!)/n!) 假 ...

  5. HDU 4349 Xiao Ming's Hope 组合数学

    题意:给你n,问在C(n,1),C(n,2)...C(n,n)中有多少个奇数. 比赛的时候打表看出规律,这里给一个数学上的说明. Lucas定理:A,B非负整数,p是质数,A,B化为p进制分别为a[n ...

  6. HDU 4349 Xiao Ming's Hope

    有这样一个性质:C(n,m)%p=C(p1,q1)*C(p2,q2).......%p,其中pkpk-1...p1,qkqk-1...q1分别是n,m在p进制下的组成. 就完了. #include&l ...

  7. hdu 4349 Xiao Ming's Hope lucas

    题目链接 给一个n, 求C(n, 0), C(n, 1), ..........C(n, n)里面有多少个是奇数. 我们考虑lucas定理, C(n, m) %2= C(n%2, m%2)*C(n/2 ...

  8. HDU 4349 Xiao Ming's Hope [Lucas定理 二进制]

    这种题面真是够了......@小明 题意:the number of odd numbers of C(n,0),C(n,1),C(n,2)...C(n,n). 奇数...就是mod 2=1啊 用Lu ...

  9. hdu 2865 Polya计数+(矩阵 or 找规律 求C)

    Birthday Toy Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

随机推荐

  1. graph-SCC

    strongly connected component(SCC): 里面的任一对顶点都是互相可达的. 一个有向图,将每个SCC缩成一个点,那么这个图就变成了DAG(有向无环图). 原图进行DFS之后 ...

  2. zoj 4049

    Halting Problem Time Limit: 1 Second      Memory Limit: 65536 KB In computability theory, the haltin ...

  3. HDU 4866 Shooting 扫描线 + 主席树

    题意: 在二维平面的第一象限有\(n(1 \leq n \leq 10^5)\)条平行于\(x\)轴的线段,接下来有\(m\)次射击\(x \, a \, b \, c\). 每次射击会获得一定的分数 ...

  4. JS实现——计算两日期之差

    在网上找了个js实现的,根据相差天数计算日期和根据两个日期计算相差多少天的示例和代码: 根据相差天数计算日期: 距离: 年 月 日 相差: 天 (输入负数则往前计算) 日期是:   根据日期计算相差天 ...

  5. loj2013 「SCOI2016」幸运数字

    点分治+线性基 (为了这六个字窝调了一下午一晚上QAQ #include <iostream> #include <cstring> #include <cstdio&g ...

  6. Stringsobits(模拟)

    描述 Consider an ordered set S of strings of N (1 <= N <= 31) bits. Bits, of course, are either ...

  7. div固定在屏幕底部

    项目中需要实现div一直显示在屏幕的底部,不管页面有多长或者多端都需要满足. 在网上找的用js实现的,移动时会闪动,效果不是特别好.也可能是没找到好的. 相比js,我更希望使用css实现 1 < ...

  8. 【bzoj4459】[Jsoi2013]丢番图 分解质因数

    题目描述 丢番图是亚历山大时期埃及著名的数学家.他是最早研究整数系数不定方程的数学家之一.为了纪念他,这些方程一般被称作丢番图方程.最著名的丢番图方程之一是x^N+y^n=z^N.费马提出,对于N&g ...

  9. 使用grunt实现自动化单元测试

    闲话不多说~ 使用步骤 1.安装插件 npm install grunt-contrib-qunit --save-dev 2.加载包含 "qunit" 任务的插件 grunt.l ...

  10. 广东工业大学2016校赛决赛重现——E积木积水(方法据说很多)

    Problem E: 积木积水 Description 现有一堆边长为1的已经放置好的积木,小明(对的,你没看错,的确是陪伴我们成长的那个小明)想知道当下雨天来时会有多少积水.小明又是如此地喜欢二次元 ...