Codeforces 622C Not Equal on a Segment 【线段树 Or DP】
题目链接:
http://codeforces.com/problemset/problem/622/C
题意:
给定序列,若干查询,每个查询给定区间和t,输出区间内任意一个不等于t的元素的位置。
分析:
最初没看样例直接钦定输出每个不等于t的元素位置,结果怎么想都是n2复杂度的,后来看了样例才发现是输出任意一个。。
对于一个区间,如果区间最大值和最小值相等,那么该区间元素值全部相同,那么我们维护区间的最大最小值,然后判断是否均等于t,若不等,输出最大值或最小值的位置即可,若相等, 则该区间所有元素值均等于t。
区间最大最小值用线段树维护,最初使用map来保存最大最小值所在的位置,结果TLE,改成数组就过了,就是内存难看了一点。。
感觉自己姿势怪怪的上网搜了一发标程:设dp[i]表示不等于a[i]的最大的元素下标
这样每次看t是否等于区间最右端的值,若是,则判断dp[t]是否在区间内,若不是,则最右端的值即为答案。非常巧妙。
代码:
#include<iostream>
#include<cstdio>
#include<map>
using namespace std;
#define sa(n) scanf("%d", &(n))
const int maxn = 6e5 + 5, maxm = 1e6 + 5, oo = 0x3f3f3f3f;
struct Node{int l;int r;int a; int b;int pa;int pb;}Tree[maxn];
int a[maxn];
int ans[maxm];
void build(int i, int l, int r)
{
Tree[i].l = l;
Tree[i].r = r;
Tree[i].a = 0;
Tree[i].b = oo;
if(l == r) {
Tree[i].pa = Tree[i].pb = l;
return;
}
int mid = l + r >> 1;
build(i << 1, l, mid);
build((i << 1) | 1, mid + 1, r);
}
void push_up(int i)
{
if(Tree[i<<1].a > Tree[(i << 1)| 1].a){
Tree[i].a = Tree[i<<1].a ;
Tree[i].pa = Tree[i << 1].pa;
}else{
Tree[i].a = Tree[(i<<1) | 1].a ;
Tree[i].pa = Tree[(i << 1) | 1].pa;
}
if(Tree[i<<1].b < Tree[(i << 1)| 1].b){
Tree[i].b = Tree[i<<1].b ;
Tree[i].pb = Tree[i << 1].pb;
}else{
Tree[i].b = Tree[(i<<1) | 1].b ;
Tree[i].pb = Tree[(i << 1) | 1].pb;
}
}
int querymax(int i, int l, int r)
{
if(Tree[i].l == l && Tree[i].r == r){
ans[Tree[i].a] = Tree[i].pa;
return Tree[i].a;
}
int mid = Tree[i].l + Tree[i].r >> 1;
if(r <= mid) return querymax(i<<1, l, r);
else if(l > mid) return querymax((i << 1)|1, l, r);
else return max(querymax(i << 1, l, mid), querymax((i << 1)|1, mid + 1, r));
}
int querymin(int i, int l, int r)
{
if(Tree[i].l == l && Tree[i].r == r){
ans[Tree[i].b] = Tree[i].pb;
return Tree[i].b;
}
int mid = Tree[i].l + Tree[i].r >> 1;
if(r <= mid) return querymin(i<<1, l, r);
else if(l > mid) return querymin((i << 1)|1, l, r);
else return min(querymin(i << 1, l, mid), querymin((i << 1)|1, mid + 1, r));
}
void update(int i, int k, int x)
{
if(Tree[i].l == k && Tree[i].r == k){
Tree[i].a = Tree[i].b = x;
return;
}
int mid = Tree[i].l + Tree[i].r >> 1;
if(k <= mid) update(i << 1, k, x);
else update((i << 1) | 1, k, x);
push_up(i);
}
int main (void)
{
int n, m;sa(n);sa(m);
build(1, 0, n - 1);
for(int i = 0; i < n; i++){
sa(a[i]);
update(1, i, a[i]);
}
int l, r, x;
int a, b;
for(int i = 0; i < m; i++){
sa(l);sa(r);sa(x);
a = querymax(1, l - 1, r - 1);
b = querymin(1, l - 1, r - 1);
if(a == b && a == x) puts("-1");
else if(a == x) printf("%d\n", ans[b] + 1);
else printf("%d\n", ans[a] + 1);
}
return 0;
}
DP方法
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define sa(n) scanf("%d", &(n))
const int maxn = 6e5 + 5, maxm = 1e6 + 5, oo = 0x3f3f3f3f;
int dp[maxn];
int a[maxn];
int main (void)
{
int n, m;sa(n);sa(m);
memset(dp, -1, sizeof(dp));
for(int i = 1; i <= n; i++){
sa(a[i]);
if(a[i] == a[i - 1]) dp[i] = dp[i - 1];
else dp[i] = i - 1;
}
int l, r, t;
for(int i = 0; i < m; i++){
sa(l);sa(r);sa(t);
if(a[r] == t){
if(dp[r] < l) cout<<-1<<endl;
else cout<<dp[r]<<endl;
}else cout<<r<<endl;
}
return 0;
}
Codeforces 622C Not Equal on a Segment 【线段树 Or DP】的更多相关文章
- Codeforces 1603D - Artistic Partition(莫反+线段树优化 dp)
Codeforces 题面传送门 & 洛谷题面传送门 学 whk 时比较无聊开了道题做做发现是道神题( 介绍一种不太一样的做法,不观察出决策单调性也可以做. 首先一个很 trivial 的 o ...
- CodeForces 622C Not Equal on a Segment
预处理p[i],p[i]表示:[p[i],i]这段闭区间上所有数字都是a[i] 询问的时候,如果xi==a[ri]并且p[ri]<=li,一定无解 剩下的情况都是有解的,如果xi!=a[ri], ...
- Codeforces 629D Babaei and Birthday Cake(线段树优化dp)
题意: n个蛋糕编号从小到大编号,j号蛋糕可以放在i号上面,当且仅当j的体积严格大于i且i<j,问最终可得的最大蛋糕体积. 分析: 实质为求最长上升子序列问题,设dp[i]从头开始到第i位的最长 ...
- Codeforces Round #271 (Div. 2) E. Pillars 线段树优化dp
E. Pillars time limit per test 1 second memory limit per test 256 megabytes input standard input out ...
- Codeforces Round #278 (Div. 2) D. Strip 线段树优化dp
D. Strip time limit per test 1 second memory limit per test 256 megabytes input standard input outpu ...
- Codeforces Round #426 (Div. 2) D 线段树优化dp
D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...
- Codeforces Round #343 (Div. 2) D. Babaei and Birthday Cake 线段树维护dp
D. Babaei and Birthday Cake 题目连接: http://www.codeforces.com/contest/629/problem/D Description As you ...
- Codeforces Round #271 (Div. 2) E题 Pillars(线段树维护DP)
题目地址:http://codeforces.com/contest/474/problem/E 第一次遇到这样的用线段树来维护DP的题目.ASC中也遇到过,当时也非常自然的想到了线段树维护DP,可是 ...
- codeforces Good bye 2016 E 线段树维护dp区间合并
codeforces Good bye 2016 E 线段树维护dp区间合并 题目大意:给你一个字符串,范围为‘0’~'9',定义一个ugly的串,即串中的子串不能有2016,但是一定要有2017,问 ...
随机推荐
- windows下配置Nginx支持php
编辑配置文件nginx.conf worker_processes 1; events { worker_connections 1024; } http { include mime.types; ...
- leetcode-27-exercise_bit maniputation
461. Hamming Distance 解题思路: 把两个数的每一位和1比较,如果结果不同说明这两位不同.要比较32次. int hammingDistance(int x, int y) { i ...
- MIP启发式算法:Variable neighborhood search
*本文主要记录和分享学习到的知识,算不上原创. *参考文章见链接. 本文主要讲述启发式算法中的变邻域搜索(Variable neighborhood search).变邻域搜索的特色在于邻域结构的可变 ...
- Linux学习-备份要点
备份资料的考虑 老实说,备份是系统损毁时等待救援的救星!因为你需要重新安装系统时, 备份的好坏会影响到你 系统复原的进度!事实上,系统有可能由于不预期的伤害而导致系统发生错误! 什么是不预期的伤害呢? ...
- kettle-学习参考
一 关于Kettle Kettle是一款国外开源的ETL工具,纯java编写,数据抽取高效稳定的数据迁移工具.Kettle中有两种脚本文件,transformation和job,transf ...
- jcenter maven 库
先了解compile ‘com.squareup.okhttp:okhttp:2.4.0’的意义 首先我们要了解compile ‘com.squareup.okhttp:okhttp:2.4.0’这一 ...
- 突然想看单纯形 BZOJ3265 志愿者招募加强版
本来的版本是可以差分之后建图利用网络流,这个题是板子题,就当存个板子,嘻嘻嘻 讲解可以到卿学姐的算法讲堂 https://www.bilibili.com/video/av7847726?from=s ...
- Thinkphp5 PDO操作mysql预处理中文字段出错问题
Thinkphp5手册上建议不用中文表明和中文字段名 今天发现中文字出问题的地方了 $pdo = new PDO('mysql:host=localhost;dbname=xsfm_master', ...
- POJ——1195Mobile phones(二维树状数组点修改矩阵查询)
Mobile phones Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 17764 Accepted: 8213 De ...
- d3 根据数据绘制svg
, , , , ]; var circles = svg.selectAll("circle") .data(dataset) .enter() .append("cir ...