Covering

Bob's school has a big playground, boys and girls always play games here after school.

To protect boys and girls from getting hurt when playing happily on the playground, rich boy Bob decided to cover the playground using his carpets.

Meanwhile, Bob is a mean boy, so he acquired that his carpets can not overlap one cell twice or more.

He has infinite carpets with sizes of 1×21×2 and 2×12×1, and the size of the playground is 4×n4×n.

Can you tell Bob the total number of schemes where the carpets can cover the playground completely without overlapping? 

InputThere are no more than 5000 test cases.

Each test case only contains one positive integer n in a line.

1≤n≤10181≤n≤1018 
OutputFor each test cases, output the answer mod 1000000007 in a line. 
Sample Input

1
2

Sample Output

1
5 题意:用1*2铺满4*n的地面。
特别综合的一道题。求法是先用模拟暴搜找出初始几个n的情况,//1 5 11 36 95 281 781 2245 6336 18061
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#define MAX 1005
#define INF 0x3f3f3f3f
#define MOD 1000000007
using namespace std;
typedef long long ll; int b[][MAX];
int n;
ll ans; void dfs(int s){
int i,j;
if(s==*n){
ans++;
return;
}
for(i=;i<=;i++){
for(j=;j<=n;j++){
if(b[i][j]==){
if(i+<=){
if(b[i+][j]==){
b[i][j]=;
b[i+][j]=;
dfs(s+);
b[i][j]=;
b[i+][j]=;
}
}
if(j+<=n){
if(b[i][j+]==){
b[i][j]=;
b[i][j+]=;
dfs(s+);
b[i][j]=;
b[i][j+]=;
}
}
return;
}
}
}
}
int main()
{
int i;
while(~scanf("%d",&n)){
memset(b,,sizeof(b));
ans=;
dfs();
printf("%lld\n",ans);
}
return ;
}

然后再找规律,猜想存在递推关系,项数可以一点点加,当用五层循环寻找递推系数关系时发现,存在一种相同的系数情况。//1 5 1 -1 0

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#define MAX 1005
#define INF 0x3f3f3f3f
#define MOD 1000000007
using namespace std;
typedef long long ll; int x[]={,,,,,,,,,,}; void find(int i){
for(int a=-;a<=;a++){
for(int b=-;b<=;b++){
for(int c=-;c<=;c++){
for(int d=-;d<=;d++){
for(int e=-;e<=;e++){
if(a*x[i-]+b*x[i-]+c*x[i-]+d*x[i-]+e==x[i]){
printf("%d:%d %d %d %d %d\n",i,a,b,c,d,e);
}
}
}
}
}
}
}
int main()
{
int n,i;
for(i=;i<=;i++){
find(i);
}
return ;
}

最后确定递推公式:f[i]=f[i-1]+5*f[i-2]+f[i-3]-f[i-4]+0。(注意:负数系数取余时要先加再余)然后套矩阵快速幂。
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#define MAX 10
#define MOD 1000000007
using namespace std;
typedef long long ll; struct mat{
ll a[MAX][MAX];
}; mat operator *(mat x,mat y) //重载乘运算
{
mat ans;
memset(ans.a,,sizeof(ans.a));
for(int i=;i<=;i++){
for(int j=;j<=;j++){
for(int k=;k<=;k++){
ans.a[i][j]+=(x.a[i][k]*y.a[k][j]+MOD)%MOD; //先加后余,避免负数取模异常
ans.a[i][j]%=MOD;
}
}
}
return ans;
}
mat qMod(mat a,ll n) //矩阵快速幂
{
mat t;
t.a[][]=;t.a[][]=;t.a[][]=;t.a[][]=-;
t.a[][]=;t.a[][]=;t.a[][]=;t.a[][]=;
t.a[][]=;t.a[][]=;t.a[][]=;t.a[][]=;
t.a[][]=;t.a[][]=;t.a[][]=;t.a[][]=; //单位矩阵
while(n){
if(n&) a=t*a; //顺序不可颠倒
n>>=;
t=t*t;
}
return a;
}
int main()
{
ll n;
while(~scanf("%I64d",&n)){
if(n==) printf("1\n");
else if(n==) printf("5\n");
else if(n==) printf("11\n");
else if(n==) printf("36\n");
else{
mat a;
memset(a.a,,sizeof(a.a));
a.a[][]=;
a.a[][]=;
a.a[][]=;
a.a[][]=; //初始矩阵
a=qMod(a,n-);
printf("%I64d\n",a.a[][]);
}
}
return ;
}

HDU - 6185 Covering(暴搜+递推+矩阵快速幂)的更多相关文章

  1. HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  2. hdu 2604 递推 矩阵快速幂

    HDU 2604 Queuing (递推+矩阵快速幂) 这位作者讲的不错,可以看看他的 #include <cstdio> #include <iostream> #inclu ...

  3. hdu 6185 递推+矩阵快速幂

    思路:考虑全部铺满时,前2列的放法.有如下5种情况:(转自http://blog.csdn.net/elbadaernu/article/details/77825979 写的很详细 膜一下)  假设 ...

  4. HDU 2842 (递推+矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...

  5. Recursive sequence HDU - 5950 (递推 矩阵快速幂优化)

    题目链接 F[1] = a, F[2] = b, F[i] = 2 * F[i-2] + F[i-1] + i ^ 4, (i >= 3) 现在要求F[N] 类似于斐波那契数列的递推式子吧, 但 ...

  6. [hdu 2604] Queuing 递推 矩阵快速幂

    Problem Description Queues and Priority Queues are data structures which are known to most computer ...

  7. HDU6030 Happy Necklace(递推+矩阵快速幂)

    传送门:点我 Little Q wants to buy a necklace for his girlfriend. Necklaces are single strings composed of ...

  8. 五校联考R1 Day1T3 平面图planar(递推 矩阵快速幂)

    题目链接 我们可以把棱柱拆成有\(n\)条高的矩形,尝试递推. 在计算的过程中,第\(i\)列(\(i\neq n\))只与\(i-1\)列有关,称\(i-1\)列的上面/下面为左上/左下,第\(i\ ...

  9. LightOJ 1244 - Tiles 猜递推+矩阵快速幂

    http://www.lightoj.com/volume_showproblem.php?problem=1244 题意:给出六种积木,不能旋转,翻转,问填充2XN的格子有几种方法.\(N < ...

随机推荐

  1. cordova 实现拨打电话-只需两步(H5)

    cordova 实现拨打电话: 第一步配置conf.xml在cordova中所有的URL Schemes 都是服从于白名单的,所以a tel 在这无法正常使用.解决方法是在项目config.xml中添 ...

  2. 【linux】ubuntu16.04安装vncserver实现远程访问图形界面

    # 步骤 1 - 安装 X11VNC  sudo apt install x11vnc -y # 步骤 2 - 配置访问密码 sudo x11vnc -storepasswd /etc/x11vnc. ...

  3. 【shell】awk引用外部变量

    在使用awk的过程中,经常会需要引用外部变量,但是awk需要使用单引号将print包起来,导致print后的$引用无效,可以采用下面的方式 例如: #!/bin/bash a="line1 ...

  4. Java for LeetCode 132 Palindrome Partitioning II

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  5. 在高通平台Android环境下编译内核模块【转】

    本文转载自:http://blog.xeonxu.info/blog/2012/12/04/zai-gao-tong-ping-tai-androidhuan-jing-xia-bian-yi-nei ...

  6. 51nod 40分算法题

    1737:见前2篇随笔. 1677:题意:给定一个n节点树,一个整数k,n个节点任意选k个出来,对于每一种选择方案,ans累加上使这k个点联通的最小边数,输出ans%1e9+7. 一句话题解:考虑每一 ...

  7. Codeforces 148D Bag of mice:概率dp 记忆化搜索

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 一个袋子中有w只白老鼠,b只黑老鼠. 公主和龙轮流从袋子里随机抓一只老鼠出来,不放回,公 ...

  8. sphinx 全文搜索引擎

    sphinx的安装与配置 --------------------------------------------------------------------------------------- ...

  9. HihoCoder1644 : 完美命名的烦恼([Offer收割]编程练习赛37)(有向图的一笔画问题||欧拉路)

    描述 程序员常常需要给变量命名.给函数命名.给项目命名.给团队命名…… 好的名字可以大大提高程序员的主观能动性,所以很多程序员在起名时都会陷入纠结和烦恼. 小Hi希望给新的项目起个完美的名字.首先小H ...

  10. 1119 Pre- and Post-order Traversals(30 分)

    1119 Pre- and Post-order Traversals(30 分) Suppose that all the keys in a binary tree are distinct po ...