规律 欧拉定理:

找规律 2^n-1 ,n 非常大用欧拉定理

Sum

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)

Total Submission(s): 1465    Accepted Submission(s): 622

Problem Description
 
Sample Input
2
 
Sample Output
2
Hint
1. For N = 2, S(1) = S(2) = 1. 2. The input file consists of multiple test cases.
 
Source
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath> using namespace std; typedef long long int LL; const LL mod=1e9+7;
const LL phi=1e9+6; char str[200000]; LL quickpow(LL x)
{
if(x==0LL) return 1LL;
LL e=2,ret=1;
while(x)
{
if(x%2)
ret=(ret*e)%mod;
e=(e*e)%mod;
x/=2LL;
}
return ret;
} int main()
{
while(scanf("%s",str)!=EOF)
{
int len=strlen(str);
/// N - 1
if(str[len-1]>'0')
{
str[len-1]--;
}
else
{
int p=len-1;
while(str[p]=='0')
{
str[p]='9';
p--;
}
str[p]--;
}
LL ret=0;
for(int i=0;i<len;i++)
{
ret=ret*10LL+str[i]-'0';
while(ret>=phi)
ret-=phi;
}
cout<<quickpow(ret)<<endl;
}
return 0;
}

HDOJ 4704 Sum 规律 欧拉定理的更多相关文章

  1. 题解报告:hdu 4704 Sum(扩展欧拉定理)

    Problem Description Sample Input 2 Sample Output 2 Hint 1. For N = 2, S(1) = S(2) = 1. 2. The input ...

  2. 【HDOJ】4704 Sum

    数学题.f(n) = 2^(n-1) mod (1e9+7). #include <cstdio> #define MAXN 100005 char buf[MAXN]; __int64 ...

  3. 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

    Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...

  4. HDU 4704 Sum (高精度+快速幂+费马小定理+二项式定理)

    Sum Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format:%I64d & %I64u Submit Status  ...

  5. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

  6. HDU - 4704 sum 大数取余+欧拉降幂

    Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submi ...

  7. hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)

    题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                  ...

  8. hdoj - 1258 Sum It Up && hdoj - 1016 Prime Ring Problem (简单dfs)

    http://acm.hdu.edu.cn/showproblem.php?pid=1258 关键点就是一次递归里面一样的数字只能选一次. #include <cstdio> #inclu ...

  9. HDOJ(1001) Sum Problem

    这一套题做错了几次,按理说直接用等差数列求和公式就行了,主要是要考虑一些运算符的结核性问题: 四则运算符(+.-.*./)和求余运算符(%)结合性都是从左到右. 于是,我自己写了一个版本,主要是考虑( ...

随机推荐

  1. Kafka应用实践与生态集成

    1.前言 Apache Kafka发展至今,已经是一个很成熟的消息队列组件了,也是大数据生态圈中不可或缺的一员.Apache Kafka社区非常的活跃,通过社区成员不断的贡献代码和迭代项目,使得Apa ...

  2. 详解Java中的字符串

    字符串常量池详解 在深入学习字符串类之前, 我们先搞懂JVM是怎样处理新生字符串的. 当你知道字符串的初始化细节后, 再去写String s = "hello"或String s ...

  3. SpringCloud 分布式事务解决方案

    目录 TX-LCN分布式事务框架 TX-LCN分布式事务框架 随着互联化的蔓延,各种项目都逐渐向分布式服务做转换.如今微服务已经普遍存在,本地事务已经无法满足分布式的要求,由此分布式事务问题诞生. 分 ...

  4. CODECHEF Oct. Challenge 2014 Children Trips

    @(XSY)[分塊, 倍增] Description There's a new trend among Bytelandian schools. The "Byteland Tourist ...

  5. cef 下载地址

    最新的CEF3源代码在:http://cefbuilds.com/CEF3的论坛:http://www.magpcss.org/ceforum/viewforum.php?f=5CEF3 C++开发环 ...

  6. java判断日期与星期

    原文:http://www.open-open.com/code/view/1440592372888 import java.text.SimpleDateFormat; import java.u ...

  7. SpringMVC整合fastdfs-client-java实现web文件上传下载

    原文:http://blog.csdn.net/wlwlwlwl015/article/details/52682153 本篇blog主要记录一下SpringMVC整合FastDFS的Java客户端实 ...

  8. go 协程与主线程强占运行

    最近在学习了Go 语言 ,  正好学习到了 协程这一块 ,遇到了困惑的地方.这个是go语言官方文档 . 在我的理解当中是,协程只能在主线程释放时间片后才会经过系统调度来运行协程,其实正确的也确实是这样 ...

  9. 电话号码 【trie树】

    电话号码 查看 提交 统计 提问 总时间限制: 1000ms 内存限制: 65536kB 描写叙述 给你一些电话号码,请推断它们是否是一致的,即是否有某个电话是还有一个电话的前缀. 比方: Emerg ...

  10. Markdown基础以及个人经验

    前言 DFRobot论坛今日支持Markdown发帖了: [md] your content here [/md] 非常棒,再也不怕辛辛苦苦排个版,一夜回到解放前.这里介绍一下Markdown写博客发 ...