题目

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

代码:Runtime: 175 ms

 class Solution:
# @param prices, a list of integer
# @return an integer
def maxProfit_with_k_transactions(self, prices, k):
days = len(prices)
local_max = [[0 for i in range(k+1)] for i in range(days)]
global_max = [[0 for i in range(k+1)] for i in range(days)]
for i in range(1,days):
diff = prices[i] - prices[i-1]
for j in range(1,k+1):
local_max[i][j] = max(local_max[i-1][j]+diff, global_max[i-1][j-1]+max(diff,0))
global_max[i][j] = max(local_max[i][j], global_max[i-1][j])
return global_max[days-1][k] def maxProfit(self, prices):
if prices is None or len(prices)<2:
return 0
return self.maxProfit_with_k_transactions(prices, 2)

思路

不是自己想的,参考这篇博客http://blog.csdn.net/fightforyourdream/article/details/14503469

跟上面博客一样的思路就不重复了,下面是自己的心得体会:

1. 这类题目,终极思路一定是往动态规划上靠,我自己概括为“全局最优 = 当前元素之前的所有元素里面的最优 or 包含当前元素的最优”

2. 这道题的动归的难点在于,只靠一个迭代公式无法完成寻优。

思路如下:

global_max[i][j] = max( global_max[i-1][j], local_max[i][j])

上述的迭代公式思路很清楚:“到第i个元素的全局最优 = 不包含第i个元素的全局最优 or 包含当前元素的局部最优”

但问题来了,local_max[i][j]是啥?没法算啊~

那么,为什么不可以对local_max[i][j]再来一个动态规划求解呢?

于是,有了如下的迭代公式:

local_max[i][j] = max(local_max[i-1][j]+diff, global_max[i-1][j-1]+max(diff,0))

上面的递推公式 把local_max当成寻优目标了,思路还是fellow经典动态规划思路。

但是,有一部分我一开始一直没想通(蓝字部分),按照经典动态规划思路直观来分析,就应该是local_max[i-1][j]啊,怎么还多出来一个diff呢?

===========================================================================================================

时隔几天再想想,求解local_max[i][j]的过程其实并不能算传统动态规划的思路,之前的思路有些偏差。原因是local_max本身就不是一个“全局”最优,因为计算local[i][j]的时候就已经把最近的一个元素算进去了。local_max[i][j] = max(local_max[i-1][j]+diff, global_max[i-1][j-1]+max(diff,0))这个公式的得来,也真心是原作者巧妙分析的结果,一下就解决了求解N次交易最优的问题。只能膜拜并记住这部分代码。

leetcode 【 Best Time to Buy and Sell Stock III 】python 实现的更多相关文章

  1. [leetcode]Best Time to Buy and Sell Stock III @ Python

    原题地址:https://oj.leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/ 题意: Say you have an array ...

  2. LeetCode: Best Time to Buy and Sell Stock III 解题报告

    Best Time to Buy and Sell Stock IIIQuestion SolutionSay you have an array for which the ith element ...

  3. [LeetCode] Best Time to Buy and Sell Stock III 买股票的最佳时间之三

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  4. [LeetCode] Best Time to Buy and Sell Stock III

    将Best Time to Buy and Sell Stock的如下思路用到此题目 思路1:第i天买入,能赚到的最大利润是多少呢?就是i + 1 ~ n天中最大的股价减去第i天的. 思路2:第i天买 ...

  5. LeetCode: Best Time to Buy and Sell Stock III [123]

    [称号] Say you have an array for which the ith element is the price of a given stock on day i. Design ...

  6. [Leetcode] Best time to buy and sell stock iii 买卖股票的最佳时机

    Say you have an array for which the i th element is the price of a given stock on day i. Design an a ...

  7. [leetcode]Best Time to Buy and Sell Stock II @ Python

    原题地址:https://oj.leetcode.com/problems/best-time-to-buy-and-sell-stock-ii/ 题意: Say you have an array ...

  8. leetcode -- Best Time to Buy and Sell Stock III TODO

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  9. LeetCode——Best Time to Buy and Sell Stock III

    Description: Say you have an array for which the ith element is the price of a given stock on day i. ...

  10. LeetCode——Best Time to Buy and Sell Stock III (股票买卖时机问题3)

    问题: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...

随机推荐

  1. Log4j知识汇总

    Log4j在java开发中还是很常见的,而在日志系统里面也占有举足轻重的地位,想要做好日志相关的工作,了解log4j还是很必要的. 下面就针对 log4j的官方文档user-guide 进行翻译与整理 ...

  2. 更改placeholder样式

    /*不要将选择器进行组合*/ /* IE 10-11 */ :-ms-input-placeholder { color: #aaa; } /* webkit */ ::-webkit-input-p ...

  3. Excel2Dataset

    //获取用户打开的Excel文档路径 private stringkkk() { OpenFileDialog selectFile = new OpenFileDialog(); selectFil ...

  4. IE的Trident引擎下实现C++和Javascript相互调用

    我们知道实现C++和Javascript通讯有下表5种接口: 引擎 编写语言 API接口 C.C++与JavaScript交互(变量.函数.类) vc2005编译静态库的大小 示例EXE的大小 执行. ...

  5. PPII打不开 更改I.bat

    http://jingyan.baidu.com/article/3a2f7c2e7d277126afd6118d.html

  6. An incomplete guide to LaTex

    LATEX入门与提高.陈志杰数理学院喜闻乐见的电子书.这本电子书由于是图片版本,所以无法使用搜索功能,幸亏目录详细. LaTeX Beginner's Guide.latex使用者都是从模版开始学习, ...

  7. 【洛谷3157】[CQOI2011] 动态逆序对(CDQ分治)

    点此看题面 大致题意: 给你一个从\(1\)到\(n\)的排列,问你每次删去一个元素后剩余的逆序对个数. 关于\(80\)分的树套树 为了练树套树,我找到了这道题目. 但悲剧的是,我的 线段树套\(T ...

  8. 为项目创建podfile

    由于写项目 不常用到,容易忘记,记录一下 第一步:新建一个项目: 第二步:打开终端,输入 cd 第三步:把项目拖入终端,(获取项目路径) 第四步:回车,输入 pod init (生成podfile 文 ...

  9. 用TreeView控件遍历磁盘目录

    实现效果: 知识运用: ListView控件中Items集合的Add方法  TteeView控件中Nodes集合的Add方法 实现代码: private void Form1_Load(object ...

  10. 3218: 字符串字符统计—C语言

    3218: 字符串字符统计—C语言 时间限制: 1 Sec  内存限制: 128 MB提交: 270  解决: 129[提交][状态][讨论版][命题人:smallgyy] 题目描述 编写一函数,由实 ...