四边形不等式优化DP

Lawrence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2220    Accepted Submission(s): 975

Problem Description
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in the Arabian theater and led a group of Arab nationals in guerilla strikes against the Ottoman Empire. His primary targets were the railroads. A highly fictionalized
version of his exploits was presented in the blockbuster movie, "Lawrence of Arabia".



You are to write a program to help Lawrence figure out how to best use his limited resources. You have some information from British Intelligence. First, the rail line is completely linear---there are no branches, no spurs. Next, British Intelligence has assigned
a Strategic Importance to each depot---an integer from 1 to 100. A depot is of no use on its own, it only has value if it is connected to other depots. The Strategic Value of the entire railroad is calculated by adding up the products of the Strategic Values
for every pair of depots that are connected, directly or indirectly, by the rail line. Consider this railroad: 






Its Strategic Value is 4*5 + 4*1 + 4*2 + 5*1 + 5*2 + 1*2 = 49.



Now, suppose that Lawrence only has enough resources for one attack. He cannot attack the depots themselves---they are too well defended. He must attack the rail line between depots, in the middle of the desert. Consider what would happen if Lawrence attacked
this rail line right in the middle: 




The Strategic Value of the remaining railroad is 4*5 + 1*2 = 22. But, suppose Lawrence attacks between the 4 and 5 depots: 




The Strategic Value of the remaining railroad is 5*1 + 5*2 + 1*2 = 17. This is Lawrence's best option.



Given a description of a railroad and the number of attacks that Lawrence can perform, figure out the smallest Strategic Value that he can achieve for that railroad. 
 
Input
There will be several data sets. Each data set will begin with a line with two integers, n and m. n is the number of depots on the railroad (1≤n≤1000), and m is the number of attacks Lawrence has resources for (0≤m<n). On the next line will be n integers, each
from 1 to 100, indicating the Strategic Value of each depot in order. End of input will be marked by a line with n=0 and m=0, which should not be processed.
 
Output
For each data set, output a single integer, indicating the smallest Strategic Value for the railroad that Lawrence can achieve with his attacks. Output each integer in its own line.
 
Sample Input
4 1
4 5 1 2
4 2
4 5 1 2
0 0
 
Sample Output
17
2
 
Source
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; typedef long long int LL; const int maxn=1100; int n,m;
LL a[maxn],sum[maxn];
LL dp[2][maxn],cost[maxn][maxn];
int s[2][maxn]; int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==0&&m==0) break;
for(int i=1;i<=n;i++)
{
scanf("%I64d",a+i);
sum[i]=sum[i-1]+a[i];
}
memset(cost,0,sizeof(cost));
memset(s,0,sizeof(s));
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
cost[i][j]=cost[i][j-1]+(sum[j-1]-sum[i-1])*a[j];
memset(dp,63,sizeof(dp)); for (int i = 1; i <= n; ++i)
{
dp[0][i]=cost[1][i];
s[0][i]=1;
}
int now=1,pre=0; for(int j=1;j<=m;j++)
{
s[now][n+1]=n-1;
for(int i=n;i>=j;i--)
{
for(int k=s[pre][i];k<=s[now][i+1];k++)
{
int temp=dp[pre][k]+cost[k+1][i];
if(temp<dp[now][i])
{
dp[now][i]=temp;
s[now][i]=k;
}
}
}
swap(now,pre);
} printf("%I64d\n",dp[pre][n]);
}
return 0;
}

HDOJ 2829 Lawrence的更多相关文章

  1. hdoj 2829 Lawrence 四边形不等式优化dp

    dp[i][j]表示前i个,炸j条路,并且最后一个炸在i的后面时,一到i这一段的最小价值. dp[i][j]=min(dp[i][k]+w[k+1][i]) w[i][j]表示i到j这一段的价值. # ...

  2. hdu 2829 Lawrence(斜率优化DP)

    题目链接:hdu 2829 Lawrence 题意: 在一条直线型的铁路上,每个站点有各自的权重num[i],每一段铁路(边)的权重(题目上说是战略价值什么的好像)是能经过这条边的所有站点的乘积之和. ...

  3. HDU 2829 - Lawrence - [斜率DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 T. E. Lawrence was a controversial figure during ...

  4. 【HDU】2829 Lawrence

    http://acm.hdu.edu.cn/showproblem.php?pid=2829 题意:将长度为n的序列分成p+1块,使得$\sum_{每块}\sum_{i<j} a[i]a[j]$ ...

  5. HDU 2829 Lawrence(动态规划-四边形不等式)

    Lawrence Problem Description T. E. Lawrence was a controversial figure during World War I. He was a ...

  6. hdu 2829 Lawrence(四边形不等式优化dp)

    T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...

  7. HDU 2829 Lawrence(四边形优化DP O(n^2))

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 题目大意:有一段铁路有n个站,每个站可以往其他站运送粮草,现在要炸掉m条路使得粮草补给最小,粮草 ...

  8. HDU 2829 Lawrence(斜率优化DP O(n^2))

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 题目大意:有一段铁路有n个站,每个站可以往其他站运送粮草,现在要炸掉m条路使得粮草补给最小,粮草 ...

  9. HDU 2829 Lawrence (斜率DP)

    斜率DP 设dp[i][j]表示前i点,炸掉j条边的最小值.j<i dp[i][j]=min{dp[k][j-1]+cost[k+1][i]} 又由得出cost[1][i]=cost[1][k] ...

随机推荐

  1. eclipse快捷键补全

    Eclipse中 补全快捷键 默认Alt+/ 但是每个人习惯有所不同 我需要来修改自己熟悉的快捷键 windows->preferences->General->keys将Conte ...

  2. MyBatis输出sql需要log4j.properties配置

    # Global logging configuration log4j.rootLogger=info,stdout,console,logfile # MyBatis logging config ...

  3. zookeeper与Kafka集群搭建及python代码测试

    Kafka初识 1.Kafka使用背景 在我们大量使用分布式数据库.分布式计算集群的时候,是否会遇到这样的一些问题: 我们想分析下用户行为(pageviews),以便我们设计出更好的广告位 我想对用户 ...

  4. linux之函数

    17.1 基本的脚本函数 函数:是一个脚本代码块,可以为其命名并在代码中任何位置重用. 17.1.1 创建函数 有两种格式:name 是函数名 1) function name {          ...

  5. 洛谷 P1653 == COGS 2043 猴子

    P2107 可爱的猴子 时间限制:1000MS  空间限制:65535KB 问题描述: 树上有n只猴子.它们编号为 1 到n.1 号猴子用它的尾巴勾着树枝.剩下的猴子都被其他的猴子用手抓着.每只猴子的 ...

  6. @RequestMapping定义不同的处理器映射规则

    通过@RequestMapping注解可以定义不同的处理器映射规则. 1. URL路径映射 @RequestMapping(value="item")或@RequestMappin ...

  7. LeetCode Weekly Contest 70 A B C D

    A. K-th Symbol in Grammar Description On the first row, we write a 0. Now in every subsequent row, w ...

  8. Win32 OpenGL 编程( 1 ) Win32 下的 OpenGL 编程必须步骤

    http://blog.csdn.net/vagrxie/article/details/4602961 Win32 OpenGL 编程( 1 ) Win32 下的 OpenGL 编程必须步骤 wri ...

  9. python 生成式和生成器

    #!/usr/bin/env python # -*- coding:utf-8 -*- # @Time : 2017/10/17 21:46 # @Author : lijunjiang # @Fi ...

  10. hdu 3986(最短路变形好题)

    Harry Potter and the Final Battle Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65536/6553 ...