CSU - 1556 Jerry's trouble(高速幂取模)
【题目链接】:click here
【题目大意】:计算x1^m+x2^m+..xn^m(1<=x1<=n)( 1 <= n < 1 000 000, 1 <= m < 1000)
【解题思路】:高速幂取模
代码:
solution one:
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const LL mod=(LL)1e9+7;
LL pow_mod(LL a,LL p,LL n)
{
if(p==0) return 1;
LL ans=pow_mod(a,p/2,n);
ans=ans*ans%n;
if(p&1) ans=ans*a%n;
return ans;
}
int n,m;
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
LL s=0;
for(int i=1; i<=n; i++)
s=(s+pow_mod(i%mod,m,mod))%mod;
printf("%lld\n",s);
}
return 0;
}
solution two:
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std; typedef long long LL;
const LL mod=1e9+7;
LL pow_mod(LL a,LL b)
{
LL res=a,ans=1;
while(b)
{
if(b&1) ans=(res*ans)%mod;
res=res*res%mod;
b>>=1;
}
return ans;
}
int main()
{
LL n,m;
while(~scanf("%lld %lld",&n,&m))
{
LL s=0;
for(int i=1; i<=n; ++i)
s+=pow_mod(i%mod,m)%mod;
printf("%lld\n",s%mod);
}
return 0;
}
CSU - 1556 Jerry's trouble(高速幂取模)的更多相关文章
- hdu 3221 Brute-force Algorithm(高速幂取模,矩阵高速幂求fib)
http://acm.hdu.edu.cn/showproblem.php?pid=3221 一晚上搞出来这么一道题..Mark. 给出这么一个程序.问funny函数调用了多少次. 我们定义数组为所求 ...
- UVa 11582 Colossal Fibonacci Numbers! 【大数幂取模】
题目链接:Uva 11582 [vjudge] watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fil ...
- HDU1061_Rightmost Digit【高速幂取余】
Rightmost Digit Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- 组合数取模Lucas定理及快速幂取模
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1) , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...
- 【转】C语言快速幂取模算法小结
(转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速 ...
- HDU 1061 Rightmost Digit --- 快速幂取模
HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...
- UVa 11582 (快速幂取模) Colossal Fibonacci Numbers!
题意: 斐波那契数列f(0) = 0, f(1) = 1, f(n+2) = f(n+1) + f(n) (n ≥ 0) 输入a.b.n,求f(ab)%n 分析: 构造一个新数列F(i) = f(i) ...
- POJ3641-Pseudoprime numbers(快速幂取模)
题目大意 判断一个数是否是伪素数 题解 赤果果的快速幂取模.... 代码: #include<iostream> #include<cmath> using namespace ...
- 九度OJ 1085 求root(N, k) -- 二分求幂及快速幂取模
题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k). ...
随机推荐
- 【07】 vue 之 Vue-router
注意: vue-router@2.x 只适用于 Vue 2.x 版本. vue-router@1.x 对应于Vue1.x版本. 的Github地址:vue-router 文档地址 7.2. vue-r ...
- 【HDOJ5528】Count a * b(积性函数)
题意:设f(i)为0<=x,y<=i-1且xy%i=0的(x,y)对数,g(i)为sigma f(j) [i%j==0] 给定n,求g(n),答案对2^64取模 T<=2e4,n&l ...
- webservice测试工具
webservice测试工具 web service exprlorer
- 搞定vim的窗口操作
最近在给学生演示数据结构代码时,发现用一般的方法总会有不方便,如果使用ide又觉得太浪费了,后来觉得用vim就够了,使用buffer总会需要页面调来跳出,学生看起来容易迷糊.所以就研究了下vim的窗口 ...
- Ansible之常用模块介绍
环境 ansible HOST-PATTERN -m MOD_NAME -a MOD_ARGS -C -f forks ssh-keygen -t rsa -P "" ssh-co ...
- luogu P3147 [USACO16OPEN]262144
题目描述 Bessie likes downloading games to play on her cell phone, even though she doesfind the small to ...
- luogu P1616 疯狂的采药
题目背景 此题为NOIP2005普及组第三题的疯狂版. 此题为纪念LiYuxiang而生. 题目描述 LiYuxiang是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师.为此,他想拜附近最有威望的 ...
- noip2017集训测试赛(三)Problem C: MST
题面 Description 给定一个n个点m条边的连通图,保证没有自环和重边.对于每条边求出,在其他边权值不变的情况下,它能取的最大权值,使得这条边在连通图的所有最小生成树上.假如最大权值为无限大, ...
- 2016北京集训测试赛(十六)Problem B: river
Solution 这题实际上并不是构造题, 而是一道网络流. 我们考虑题目要求的一条路径应该是什么样子的: 它是一个环, 并且满足每个点有且仅有一条出边, 一条入边, 同时这两条边的权值还必须不一样. ...
- Java中Properties配置文件读取
以下实践的是Properties配置文件的基本操作方法.像spring使用xml做依赖注入时,这个配置文件起到非常实用的作用. 一.格式规范 参考wiki百科的格式简介:https://zh.wiki ...