前情提要:

工作原因需要处理一批约30G左右的CSV数据,数据量级不需要hadoop的使用,同时由于办公的本本内存较低的缘故,需要解读取数据时内存不足的原因。

操作流程:

方法与方式:首先是读取数据,常见的csv格式读取时一次性全部读取进来, 面对数据量较大(本次3亿条实车数据)时,需要 分批 并且有 选择性 的读取后 提取有效信息 删除冗余信息并清理内存。

同时,为了使处理数据时效率更高,将整理好的数据实时读取进来以后,保存成快速且可读的数据形式另行存储。然后释放内存并读取下一批数据直到整个流程结束

下面是操作代码:

#import pickle # pkl存储与 hdf5存储
import pandas as pd
# 释放内存
import gc
reader = pd.read_csv(r'E:\VEH_GBK_2019-01-01.csv', encoding='gbk',iterator=True,low_memory=False,usecols=[0,1,2,4])
title_mc=['location','vid','上报时间','充电状态'] loop = True
chunkSize = 1000000
ans_vid={}
location_list=['上海','重庆','广东','北京']
for i in location_list:
ans_vid[i]=[] while loop:
try:
chunk = reader.get_chunk(chunkSize)
chunk.columns=title_mc;
chunk['充电状态']=chunk['充电状态'].astype(str)
chunk['location']=chunk['location'].astype(str)
for i in location_list:
temp=chunk[chunk['location'].str.contains(i)]
if temp[(temp['充电状态']=='1.0') | (temp['充电状态']=='4.0')].empty==False:
ans_vid[i].append(temp[(temp['充电状态']=='1.0') | (temp['充电状态']=='4.0')])
del temp
gc.collect() del chunk
gc.collect() except StopIteration:
loop = False
print ("Iteration is stopped.") for i in location_list:
ans_vid[i]=pd.concat(ans_vid[i]) location_list=['shanghai','chongqing','guangdong','beijing'] for i in location_list:
ans_vid[i].to_hdf(i+'_charging.h5',key=ans_vid[i],encoding='gbk')

gc.collect()放在del 参数的后面用以及时释放内存。

读取的核心代码是:

reader = pd.read_csv(r'E:\VEH_GBK_2019-01-01.csv', encoding='gbk',iterator=True,low_memory=False,usecols=[0,1,2,4]) # usecols是读取原数据的某几列  chunkSize是分批读取的量级

chunk = reader.get_chunk(chunkSize)

本次读取的存储格式采用的是h5格式即hdf,该种格式易于读取较大数据量级,同时也有一些数据格式可以保存较大的数据量级: pkl ,npy等

推荐h5(保存dataframe)与pkl(保存字典格式),其读取速度更快.易于使用

h5格式调用pandas内置对dataframe的保存即可: 例 df是一个需要保存的较大的dataframe。代码为

 df.to_hdf('123.h5',encoding='gbk',key='df')

pkl 保存需要先导入pickle ,所需保存的字典为ans_vid, 代码如下

# 导出
output = open('usage_top2veh.pkl', 'wb')
pickle.dump(ans_vid, output)
output.close()
# 导入
pkl_file = open('usage_top2veh.pkl', 'rb')
data2 = pickle.load(pkl_file)
pkl_file.close()

pandas处理较大数据量级的方法 - chunk,hdf,pkl的更多相关文章

  1. .NET MVC Json()处理大数据异常解决方法

    [1-部分原文]: .NET MVC Json()处理大数据异常解决方法 整个项目采用微软的ASP.NET MVC3进行开发,前端显示采用EasyUI框架,图表的显示用的是Highcharts,主要进 ...

  2. MySQL分页查询大数据量优化方法

    方法1: 直接使用数据库提供的SQL语句 语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N适应场景: 适用于数据量较少的情况(元组百/千级)原因/缺点: ...

  3. 分享MSSQL、MySql、Oracle的大数据批量导入方法及编程手法细节

    1:MSSQL SQL语法篇: BULK INSERT [ database_name . [ schema_name ] . | schema_name . ] [ table_name | vie ...

  4. IIS大数据请求设置方法

    大并发大数据量请求一般会分为几种情况: 1.大量的用户同时对系统的不同功能页面进行查找,更新操作 2.大量的用户同时对系统的同一个页面,同一个表的大数据量进行查询操作 3.大量的用户同时对系统的同一个 ...

  5. elasticsearch5.0集群大数据量迁移方法及注意事项

    当es集群的数据量较小的情况下elasticdump这个工具比较方便,但是当数据量达到一定级别比如上百G的时候,elasticdump速度就很慢了,此时我们可以使用快照的方法进行备份 elasticd ...

  6. PHP处理大数据导出Excel方法

    在日常的工作中,很多时候都需要导出各种各样的报表,但是如果导出的数据一旦比较大,很容易就导致超时,对于这种问题,有很多的解决方法,例如网上说的分批导出.采用CSV.还有就采用JAVA.甚至是C++和C ...

  7. [转]ASP.NET MVC Json()处理大数据异常解决方法 json maxjsonlength

    本文转自:http://blog.csdn.net/blacksource/article/details/18797055 先对项目做个简单介绍: 整个项目采用微软的ASP.NET MVC3进行开发 ...

  8. ASP.NET MVC Json()处理大数据异常解决方法,字符串的长度超过了为 maxJsonLength

    问题: 使用 JSON JavaScriptSerializer 进行序列化或反序列化时出错.字符串的长度超过了为 maxJsonLength 属性设置的值. <system.web.exten ...

  9. ASP.NET MVC Json() 处理大数据异常解决方法 json MaxJsonLength

    网上很多解决方案,在webconfig中添加,但是实践证明无效 <system.web.extensions> <scripting> <webServices> ...

随机推荐

  1. BZOJ 1059(二分图匹配)

    要点 发现每行每列都得有1 发现无论怎么换,在同一行的永远在同一行,同一列的永远在同一列 于是换行貌似没什么用啊,换列就够了.换列无法做到则无答案 于是变成了行与列进行二分匹配 #include &l ...

  2. 如何给数组用fill函数和memset函数给数组赋初值

    fill是按照单元来赋值的,所以可以填充一个区间的任意值 #include<iostream> #include<stdio.h> #include<string.h&g ...

  3. (转)nginx应用总结(2)--突破高并发的性能优化

    原文:http://www.cnblogs.com/kevingrace/p/6094007.html 在日常的运维工作中,经常会用到nginx服务,也时常会碰到nginx因高并发导致的性能瓶颈问题. ...

  4. restful 风格 加上springmvc

    一.spring 版本:spring-framework-3.2.7.RELEASE 二.所需其它Jar包: 三.主要代码: ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

  5. 开源分布式Job系统,调度与业务分离-HttpJob.Agent组件介绍以及如何使用

    项目介绍: Hangfire:是一个开源的job调度系统,支持分布式JOB!! Hangfire.HttpJob 是我针对Hangfire开发的一个组件,该组件和Hangfire本身是独立的.可以独立 ...

  6. jQuery的一些备忘

    操作元素的样式 主要包括以下几种方式: $("#msg").css("background"); //返回元素的背景颜色 $("#msg") ...

  7. Java基于springMVC的验证码案例

    ``` Java验证码案例(基于springMVC方式) 验证码工具类 package com.ekyb.common.util; import java.awt.Color; import java ...

  8. 兼容IE9以下的获取兄弟节点

    function fileCheck(ele){ function getNextElement(node){ //兼容IE9以下的 获取兄弟节点 var NextElementNode = node ...

  9. SQL基本语法备忘

    注:以下演示是在mysql命令行下的操作 数据库相关操作 create database mytest; --创建数据库 create database if not exists mytest; - ...

  10. windows下安装pm2

    安装pm2 npm install pm2 -g 添加系统环境变量 PM2_HOME=C:\Users\PCONE\.pm2 打开新的cmd命令行窗口,执行以下命令来安装服务 pm2-service- ...