Problem Description
Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more and more interesting things about GCD. Today He comes up with Range Greatest Common Divisor Query (RGCDQ). What’s RGCDQ? Please let me explain it to you gradually. For a positive integer x, F(x) indicates the number of kind of prime factor of x. For example F(2)=1. F(10)=2, because 10=2*5. F(12)=2, because 12=2*2*3, there are two kinds of prime factor. For each query, we will get an interval [L, R], Hdu wants to know maxGCD(F(i),F(j)) (L≤i<j≤R)
 
Input
There are multiple queries. In the first line of the input file there is an integer T indicates the number of queries.
In the next T lines, each line contains L, R which is mentioned above.

All input items are integers.
1<= T <= 1000000
2<=L < R<=1000000

 
Output
For each query,output the answer in a single line.
See the sample for more details.
 
Sample Input
2
2 3
3 5
 
Sample Output
1
1

这个题目比较巧妙。

f(i)求的是i的素数因子个数。

首先需要处理因子个数。这个方法很多。

其实对于一个i来说,由于i最大是1000000,然而当2*3*5*7.....*17这时是最大能在这个范围的。其他数的素数因子数目必然小于这个。也就是f(i)最大是7。

这样只需要查询L到R区间内f(i)分别为1, 2, 3, 4, 5, 6, 7的个数,然后暴力枚举gcd的最大值就可以了。

当时人比较二,区间求和直接上了线段树,然后MLE了,然后换成树状数组才AC。。。。

赛后经人提醒才发现,这个完全没有点修改操作,根本不需要使用上述工具。直接用sum数组保存前缀和就可以。然后sum[j] - sum[i-1]就是[i, j]区间的和了。。。

不管怎样第一次使用树状数组,还是附上代码。

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <algorithm>
#define LL long long using namespace std; //GCD
//求最大公约数
//O(logn)
int gcd(int a, int b)
{
if (b == )
return a;
else
return gcd(b, a%b);
} const int maxN = ; char f[maxN];
bool b[maxN];
int L, R; struct Val
{
int v[]; Val()
{
memset(v, , sizeof(v));
}
Val operator+(Val x)
{
Val ans;
for (int i = ; i <= ; ++i)
ans.v[i] = x.v[i] + v[i];
return ans;
}
Val operator-(Val x)
{
Val ans;
for (int i = ; i <= ; ++i)
ans.v[i] = v[i] - x.v[i];
return ans;
}
}; Val d[maxN]; int lowbit(int x)
{
return x&(-x);
} void add(int pos,Val pls)
{
while(pos <= maxN)//x最大是N
{
d[pos] = d[pos] + pls;
pos += lowbit(pos);
}
} Val sum(int to)
{
Val s;
while(to > )
{
s = s + d[to];
to -= lowbit(to);
}
return s;
} Val query(int from, int to)
{
return sum(to) - sum(from - );
} void init()
{
int m = ;
memset(f,,sizeof(f));
memset(b,,sizeof(b));
for (int i = ; i <= m; i++)
{
if (!b[i])
for(int j = i; j <= m; j = j+i)
{
b[j] = ;
f[j]++;
}
} for (int i = ; i <= m; ++i)
{
Val tmp;
tmp.v[f[i]] = ;
add(i, tmp);
}
} void work()
{
Val p = query(L, R);
int ans = ;
for (int i = ; i <= ; ++i)
{
if (!p.v[i])
continue;
p.v[i]--;
for (int j = i; j <= ; ++j)
{
if (!p.v[j])
continue;
ans = max(ans, gcd(i, j));
}
p.v[i]++;
}
printf("%d\n", ans);
} int main()
{
//freopen("test.in", "r", stdin);
init();
int T;
scanf("%d", &T);
for (int times = ; times < T; ++times)
{
scanf("%d%d", &L, &R);
work();
}
return ;
}

ACM学习历程—HDU 5317 RGCDQ (数论)的更多相关文章

  1. ACM学习历程—HDU 5446 Unknown Treasure(数论)(2015长春网赛1010题)

    Problem Description On the way to the next secret treasure hiding place, the mathematician discovere ...

  2. ACM学习历程—HDU 3092 Least common multiple(数论 && 动态规划 && 大数)

    Description Partychen like to do mathematical problems. One day, when he was doing on a least common ...

  3. ACM学习历程—HDU 5512 Pagodas(数学)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5512 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是给了初始的集合{a, b},然后取集合里 ...

  4. HDU 5317 RGCDQ (数论素筛)

    RGCDQ Time Limit: 3000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Submit Status ...

  5. ACM学习历程—HDU5668 Circle(数论)

    http://acm.hdu.edu.cn/showproblem.php?pid=5668 这题的话,假设每次报x个,那么可以模拟一遍, 假设第i个出局的是a[i],那么从第i-1个出局的人后,重新 ...

  6. ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...

  7. ACM学习历程—HDU5666 Segment(数论)

    http://acm.hdu.edu.cn/showproblem.php?pid=5666 这题的关键是q为质数,不妨设线段上点(x0, y0),则x0+y0=q. 那么直线方程则为y = y0/x ...

  8. ACM学习历程—HDU5585 Numbers(数论 || 大数)(BestCoder Round #64 (div.2) 1001)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5585 题目大意就是求大数是否能被2,3,5整除. 我直接上了Java大数,不过可以对末尾来判断2和5, ...

  9. ACM学习历程—HDU 3915 Game(Nim博弈 && xor高斯消元)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3915 题目大意是给了n个堆,然后去掉一些堆,使得先手变成必败局势. 首先这是个Nim博弈,必败局势是所 ...

随机推荐

  1. android开发系列之使用xml自定义控件

    在android开发的过程中,有的时候面对多个Activity里面一些相同的布局,我们需要写多次相同的代码,同时这种方法给我们的项目维护也带来了很大不便.那么有没有一种可行的办法能够将Activity ...

  2. python之prettytable

    sdata={'语文':89,'数学':96,'音乐':39,'英语':78,'化学':88} #字典向Series转化 >>> studata=Series(sdata) > ...

  3. 创业神人&当时钢铁侠:Elon Musk

    Steve Jobs的光环已经随着他的离去而淡褪,短期内,世上恐怕再难有人像他这样惊世骇俗般的改变了世界.但是如果你了解到一个人,一个来自南非年仅40岁的企业家,在短短的20年里,在全世界最酷的三个领 ...

  4. 自制小工具大大加速MySQL SQL语句优化(附源码)

    引言 优化SQL,是DBA常见的工作之一.如何高效.快速地优化一条语句,是每个DBA经常要面对的一个问题.在日常的优化工作中,我发现有很多操作是在优化过程中必不可少的步骤.然而这些步骤重复性的执行,又 ...

  5. Linux kernel 2.6下的modules编译与KBuild

    转载:http://blog.sina.com.cn/s/blog_602f87700100dq1u.html Sam之前在Linux kernel 2.4下写过一些driver.但自从转到kerne ...

  6. vim与sublime

    vim与sublime 对程序员来说,写代码是再熟悉不过的事情了,windows系统自带有记事本软件,能写写小规模的代码,可是代码量大了,它的局限性就暴露得很明显了:没有语法高亮,没有自动提示,不支持 ...

  7. eclipse没有(添加)"Dynamic Web Project"选项的方法

    建议使用代理lantern,否则可能要花很长时间显示和下载插件 http://www.dabu.info/eclipse-no-add-dynamic-web-project-option.html ...

  8. python 基础 2.6 break用法

    python中最基本的语法格式大概就是缩进了.python中常用的循环:for循环,if循环.一个小游戏说明for,if ,break的用法. 猜数字游戏: 1.系统生成一个20以内的随机数 2.玩家 ...

  9. 【BZOJ4605】崂山白花蛇草水 权值线段树+kd-tree

    [BZOJ4605]崂山白花蛇草水 Description 神犇Aleph在SDOI Round2前立了一个flag:如果进了省队,就现场直播喝崂山白花蛇草水.凭借着神犇Aleph的实力,他轻松地进了 ...

  10. .net概念(转)

    你主要想问.Net和Java的差异在哪里 Java是开发语言 .Net叫开发平台 但事实上你管Java叫开发平台也没错 平台就是一个供你在上面进行开发的平台 (英语叫Framework,也可以翻译成“ ...