ACM-ICPC 2018 徐州赛区网络预赛 A. Hard to prepare (组合数学,递归)
A. Hard to prepare
After Incident, a feast is usually held in Hakurei Shrine. This time Reimu asked Kokoro to deliver a Nogaku show during the feast. To enjoy the show, every audience has to wear a Nogaku mask, and seat around as a circle.
There are N guests Reimu serves. Kokoro has 2^k masks numbered from 0,1,\cdots,0,1,⋯, 2^k - 12k−1, and every guest wears one of the masks. The masks have dark power of Dark Nogaku, and to prevent guests from being hurt by the power, two guests seating aside must ensure that if their masks are numbered ii and jj , then ii XNOR jj must be positive. (two guests can wear the same mask). XNOR means ~(ii^jj) and every number has kk bits. (11 XNOR 1 = 11=1, 00 XNOR 0 = 10=1, 11 XNOR 0 = 00=0)
You may have seen 《A Summer Day's dream》, a doujin Animation of Touhou Project. Things go like the anime, Suika activated her ability, and the feast will loop for infinite times. This really troubles Reimu: to not make her customers feel bored, she must prepare enough numbers of different Nogaku scenes. Reimu find that each time the same guest will seat on the same seat, and She just have to prepare a new scene for a specific mask distribution. Two distribution plans are considered different, if any guest wears different masks.
In order to save faiths for Shrine, Reimu have to calculate that to make guests not bored, how many different Nogaku scenes does Reimu and Kokoro have to prepare. Due to the number may be too large, Reimu only want to get the answer modules 1e9+71e9+7 . Reimu did never attend Terakoya, so she doesn't know how to calculate in module. So Reimu wishes you to help her figure out the answer, and she promises that after you succeed she will give you a balloon as a gift.
Input
First line one number TT , the number of testcases; (T \le 20)(T≤20) .
Next TT lines each contains two numbers, NN and k(0<N, k \le 1e6)k(0<N,k≤1e6) .
Output
For each testcase output one line with a single number of scenes Reimu and Kokoro have to prepare, the answer modules 1e9+71e9+7 .
题目链接:
https://www.jisuanke.com/contest/1557?view=challenges
题意:
n个数字,每个数字范围\([0, 2^k-1]\),问有多少种不同的序列满足对于所有相邻的两个数字,它们异或值不能为\(2^k-1\),其中第一个数字和最后一个数字也算相邻
思路:
很容易想到,第1个数有\(2^k\)种选择,第2个数到第n-1个数都有\(2^k-1\)种选择,第n个数有\(2^k-2\)种选择
所以答案就是\(2^k*(2^k-2)*(2^k-1)^{n-2}\)
但是这样会出现漏算:在第1个数和第n-1个数相同的情况下,第n个数有\(2^k-1\)种选择, 而并非\(2^k-2\)种
然后仔细分析可以发现,漏算的情况你可以把第1个数和第n-1个数当成同一个数,这样序列长度就变成n-2了,问题相同,只是数据规模变小,递归解决即可
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int t;
const ll mod = 1e9 + 7;
ll n, k;
ll base;
ll solve(ll x)
{
if (x == 2)
{
return base * (base - 1) % mod;
} else if (x == 1)
{
return base;
}
ll res = base * powmod(base - 1ll, x - 2, mod) % mod * max(base - 2ll, 0ll) % mod ;
res += solve(x - 2) % mod ;
res %= mod;
return res;
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
scanf("%d", &t);
while (t--)
{
scanf("%lld %lld", &n, &k);
base = powmod(2ll, k, mod);
printf("%lld\n", solve(n) );
}
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
ACM-ICPC 2018 徐州赛区网络预赛 A. Hard to prepare (组合数学,递归)的更多相关文章
- ACM-ICPC 2018 徐州赛区网络预赛 A Hard to prepare(递推)
https://nanti.jisuanke.com/t/31453 题目 有n个格子拉成一个环,给你k,你能使用任意个数的0 ~ 2^k - 1,规定操作 i XNOR j 为~(i ^ j), ...
- ACM-ICPC 2018 徐州赛区网络预赛 A Hard to prepare
https://nanti.jisuanke.com/t/31453 题目大意: 有n个人坐成一圈,然后有\(2^k\)种颜色可以分发给每个人,每个人可以收到相同的颜色,但是相邻两个人的颜色标号同或不 ...
- ACM-ICPC 2018 徐州赛区网络预赛A Hard to prepare(DP)题解
题目链接 题意:有n个格子拉成一个环,给你k,你能使用任意个数的0 ~ 2^k - 1,规定操作 i XNOR j 为~(i ^ j),要求相邻的格子的元素的XNOR为正数,问你有几种排法,答案取 ...
- ACM-ICPC 2018 徐州赛区网络预赛 A.Hard to prepare 【规律递推】
任意门:https://nanti.jisuanke.com/t/31453 A.Hard to prepare After Incident, a feast is usually held in ...
- ACM-ICPC 2018 徐州赛区网络预赛(8/11)
ACM-ICPC 2018 徐州赛区网络预赛 A.Hard to prepare 枚举第一个选的,接下来的那个不能取前一个的取反 \(DP[i][0]\)表示选和第一个相同的 \(DP[i][1]\) ...
- ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)
ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...
- ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer (最大生成树+LCA求节点距离)
ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer J. Maze Designer After the long vacation, the maze designer ...
- 计蒜客 1460.Ryuji doesn't want to study-树状数组 or 线段树 (ACM-ICPC 2018 徐州赛区网络预赛 H)
H.Ryuji doesn't want to study 27.34% 1000ms 262144K Ryuji is not a good student, and he doesn't wa ...
- ACM-ICPC 2018 徐州赛区网络预赛 B(dp || 博弈(未完成)
传送门 题面: In a world where ordinary people cannot reach, a boy named "Koutarou" and a girl n ...
随机推荐
- [Google] Help employee find the nearest gbike
You are given a campus map with the Google buildings, roads and Google bikes. You have to help the e ...
- CF1237D Balanced Playlist
思路:假设从第i首歌开始听,结束位置为j,那么从第i+1首歌开始听,结束位置一定不早于j.可以用反证法证明.想到这一点,就不难解决了. 实现: #include <bits/stdc++.h&g ...
- CSS 常用效果--持续更新
单行超出省略: white-space: nowrap; text-overflow:ellipsis; overflow:hidden; 多行超出省略: text-overflow: -o-elli ...
- docker 搭建私有 docker hub
查找registry 镜像 meiya@meiya:/etc/docker$ clear meiya@meiya:/etc/docker$ docker search registry NAME DE ...
- 八皇后问题——列出所有的解,可推至N皇后
<数据结构>--邓俊辉版本 读书笔记 今天学习了回溯法,有两道习题,一道N皇后,一道迷宫寻径.今天,先解决N皇后问题.由于笔者 擅长java,所以用java重现了八皇后问题. 注意是jav ...
- k8s 证书反解
k8s证书反解 1.将k8s配置文件(kubelet.kubeconfig)中client-certificate-data:内容拷贝 2.echo "client-certificate- ...
- ~postman全局变量与环境变量介绍
postman官方文档:https://learning.getpostman.com/docs/postman/scripts/test_examples/ 一.环境变量 实例:将URL作为环境变量 ...
- PAT甲级题分类汇编——图
本文为PAT甲级分类汇编系列文章. 图,就是层序遍历和Dijkstra这一套,#include<queue> 是必须的. 题号 标题 分数 大意 时间 1072 Gas Station 3 ...
- 彻底关闭networkmanager
chkconfig NetworkManager offsystemctl stop NetworkManagersystemctl disable NetworkManager
- 【dfs】Sequence Decoding
Sequence Decoding 题目描述 The amino acids in proteins are classified into two types of elements, hydrop ...