证明:g(i) ≤ g(j)   (i ≤ j)

令 d=g(i) , k<d ,

设cut = x表示 f(i) = f(x) + w[x,i]    ( x < i )

构造一个式子:

(      f(i)    -    f(i)   )  -  (     f(j)    -    f(j)   )

cut=k     cut=d           cut=k     cut=d

=(     f(k) + w( k , i )  -  f(d) - w( d , i )      ) - (    f(k) + w( k , j )   -   f(d) - w( d , j )    )

=(   w( k , i )+  w( d , j )   ) - (   w( k , j )+  w( d , i )  )

因为 k < d < i < j

所以

(   w( k , i )+  w( d , j )   ) ≤ (   w( k , j )+  w( d , i )  )

(      f(i)    -    f(i)   )  -  (     f(j)    -    f(j)   )  ≤  0

cut=k     cut=d           cut=k     cut=d

又因为 d = g(i)

所以

(      f(i)    -    f(i)   )  ≥ 0

cut=k     cut=d

(     f(j)    -    f(j)   )  ≥ 0

cut=k     cut=d

f(j)    ≥    f(j)

cut=k      cut=d

又因为 k < d

所以 g(j)>=d=g(i)

证毕

Dp优化之决策单调栈优化的更多相关文章

  1. 【P2422】良好的感觉(单调栈优化DP//奇怪的暴力)

    话说正解是单调栈优化DP,然而貌似根据某种玄学的推算,这个题暴力出解貌似也是可以的.首先,我们枚举所有的点作为最小点,然后横向展开,遇到更小的就停止...然后再操作一下,看上去时间O(N^2),然而由 ...

  2. csp-s模拟测试50(9.22)「施工(单调栈优化DP)」·「蔬菜(二维莫队???)」·「联盟(树上直径)」

    改了两天,终于将T1,T3毒瘤题改完了... T1 施工(单调栈优化DP) 考场上只想到了n*hmaxn*hmaxn的DP,用线段树优化一下变成n*hmaxn*log但显然不是正解 正解是很**的单调 ...

  3. [CF442C] Artem and Array (贪心+单调栈优化)

    题目链接:http://codeforces.com/problemset/problem/442/C 题目大意:一个数列,有n个元素.你可以做n-2次操作,每次操作去除一个数字,并且得到这个数字两边 ...

  4. 洛谷 P2254 [NOI2005]瑰丽华尔兹(单调栈优化DP)

    题目描述 不妨认为舞厅是一个N行M列的矩阵,矩阵中的某些方格上堆放了一些家具,其他的则是空地.钢琴可以在空地上滑动,但不能撞上家具或滑出舞厅,否则会损坏钢琴和家具,引来难缠的船长.每个时刻,钢琴都会随 ...

  5. CF 602 D. Lipshitz Sequence 数学 + 单调栈 + 优化

    http://codeforces.com/contest/602/problem/D 这题需要注意到的是,对于三个点(x1, y1)和(x2, y2)和(x3, y3).如果要算出区间[1, 3]的 ...

  6. POJ - 3415 Common Substrings(后缀数组求长度不小于 k 的公共子串的个数+单调栈优化)

    Description A substring of a string T is defined as: T( i, k)= TiTi+1... Ti+k-1, 1≤ i≤ i+k-1≤| T|. G ...

  7. codeforce1029B B. Creating the Contest(简单dp,简单版单调栈)

    B. Creating the Contest time limit per test 1 second memory limit per test 256 megabytes input stand ...

  8. 【BZOJ 4709】柠檬 斜率优化dp+单调栈

    题意 给$n$个贝壳,可以将贝壳分成若干段,每段选取一个贝壳$s_i$,这一段$s_i$的数目为$num$,可以得到$num^2\times s_i$个柠檬,求最多能得到几个柠檬 可以发现只有在一段中 ...

  9. 【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈

    [BZOJ4709][Jsoi2011]柠檬 Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,0 ...

随机推荐

  1. 我们为什么要用redis

    Redis的5要点: 1.为什么要选择Redis:介绍Redis的使用场景与使用Redis的原因: 2.Redis常用命令总结:包括时间复杂度总结与具体数据类型在Redis内部使用的数据结构: 3.R ...

  2. iOS - 回顾总结Runtime原理及使用

    runtime简介 因为Objc是一门动态语言,所以它总是想办法把一些决定工作从编译连接推迟到运行时.也就是说只有编译器是不够的,还需要一个运行时系统 (runtime system) 来执行编译后的 ...

  3. 为满足中国税改,SAP该如何打SPS

    *****一定要先阅读这个note***** ***** 2736625 - [ZH] 应对2019中国个税改革,SAP系统升级常见问题汇总 **** 1784328 - How to check C ...

  4. Mysql 中完善的帮助命令

    Mysql 中完善的帮助命令 Mysql 中的帮助系统很完善,很多操作都可以通过命令行直接获得帮助,如下示例: Mysql 命令行帮助 [root@mysql1 mydata1]# mysql -S ...

  5. 四:MySQL系列之Python交互(四)

    该篇主要介绍MySQL数据库的分表.以及与Python的交互的基本操作等. 一.拆分表操作 1.1  准备工作 创建数据库 --> 使用数据库 --> 创建数据表 --- 添加记录 -- ...

  6. KVM虚拟化——简介

    KVM 基于内核的虚拟机KVM(Kernel-Based Virtual Machine)是2007年问世的开源虚拟化解决方案.KVM需要两个条件: ①硬件支持全虚拟化 ②操作系统为Linux KVM ...

  7. LeetCode:135. 分发糖果

    LeetCode:135. 分发糖果 老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分. 你需要按照以下要求,帮助老师给这些孩子分发糖果: 每个孩子至少分 ...

  8. 删除svn用户

    以win7为例 1.进入c:/Users/[你的用户名]/AppData/Roaming/Subversion/auth目录,删除该目录下的所有文件: 2.重启eclipse/myeclipse,提交 ...

  9. flask 框架 转载:https://cloud.tencent.com/developer/article/1465968

    特点总结: 类名称---->数据库表名 类属性---->数据库字段 类的对象----->数据库表中的一行一行数据 3.ORM操作注意(理解) 1/因为SQLALChemy去app身上 ...

  10. Django Forms的错误提示

    1.error_messages={} 首先,在构建form表单时,可以用"error_messages={}"自定义错误信息,例如: # form.py 1 from djang ...