line: (434,300) (453,144) (0,0,0),(-0.926698,-1.25853,2.032)

0.781452

----------------------------------------------------

line: (259,104) (472,107) (-1.14799,-1.27092,2.052),(-1.11387,-1.25048,2.019)

0.0198861

----------------------------------------------------

line: (260,108) (486,120) (-1.10865,-1.25048,2.019),(0,0,0)

0.835585

----------------------------------------------------

line: (122,86) (255,202) (-1.23559,-1.26287,2.039),(-0.680211,-1.37621,2.222)

0.283413

----------------------------------------------------

line: (337,207) (421,307) (-0.642403,-1.35701,2.191),(0,0,0)

0.750692

----------------------------------------------------

line: (341,191) (571,134) (-0.717631,-1.32852,2.145),(0,0,0)

0.754976

----------------------------------------------------

line: (280,64) (603,69) (-1.25212,-1.16996,1.889),(0,0,0)

0.856828

----------------------------------------------------

line: (258,51) (601,63) (-1.21531,-1.08078,1.745),(0,0,0)

0.81318

----------------------------------------------------

line: (321,235) (450,298) (-0.476977,-1.33781,2.16),(0,0,0)

0.710148

----------------------------------------------------

line: (336,109) (489,114) (-1.09961,-1.24614,2.012),(0,0,0)

0.830965

----------------------------------------------------

line: (345,202) (453,296) (-0.680211,-1.37621,2.222),(0,0,0)

0.767567

----------------------------------------------------

line: (258,53) (603,65) (-1.23394,-1.10555,1.785),(0,0,0)

0.828378

----------------------------------------------------

line: (331,225) (483,271) (-0.538485,-1.35205,2.183),(0,0,0)

0.727671

----------------------------------------------------

line: (261,102) (473,106) (-1.17046,-1.28393,2.073),(-1.1263,-1.25853,2.032)

0.0254702

----------------------------------------------------

line: (266,62) (549,67) (-1.26188,-1.16996,1.889),(0,0,0)

0.860402

----------------------------------------------------

line: (258,44) (530,53) (-1.17686,-1.02008,1.647),(0,0,0)

0.77871

----------------------------------------------------

line: (337,191) (571,133) (-0.717631,-1.32852,2.145),(0,0,0)

0.754976

----------------------------------------------------

line: (408,201) (568,196) (-0.685955,-1.37621,2.222),(0,0,0)

0.768844

----------------------------------------------------

line: (442,197) (568,193) (-0.703825,-1.3663,2.206),(0,0,0)

0.768463

----------------------------------------------------

line: (262,110) (449,119) (-1.09441,-1.24614,2.012),(-1.04083,-1.23809,1.999)

0.0270892

----------------------------------------------------

line: (204,299) (209,160) (0,0,0),(-0.868367,-1.29693,2.094)

0.780399

----------------------------------------------------

line: (259,42) (534,51) (-1.17602,-1.01203,1.634),(0,0,0)

0.77576

----------------------------------------------------

line: (258,54) (604,66) (-1.24792,-1.12227,1.812),(0,0,0)

0.839166

----------------------------------------------------

line: (393,176) (571,131) (-0.814988,-1.35205,2.183),(0,0,0)

0.789344

----------------------------------------------------

line: (259,107) (488,119) (-1.11387,-1.25048,2.019),(0,0,0)

0.837319

----------------------------------------------------

line: (258,55) (510,63) (-1.25421,-1.13218,1.828),(0,0,0)

0.84482

----------------------------------------------------

line: (260,40) (536,50) (-1.18156,-1.00955,1.63),(0,0,0)

0.777059

----------------------------------------------------

line: (445,69) (601,71) (-1.2238,-1.16625,1.883),(0,0,0)

0.845256

----------------------------------------------------

line: (260,111) (411,119) (-1.08596,-1.24243,2.006),(-1.04083,-1.23809,1.999)

0.0226678

----------------------------------------------------

line: (358,100) (485,104) (-1.19314,-1.29693,2.094),(0,0,0)

0.881137

----------------------------------------------------

line: (306,65) (602,70) (-1.24327,-1.16625,1.883),(0,0,0)

0.85233

----------------------------------------------------

line: (336,207) (413,305) (-0.642403,-1.35701,2.191),(0,0,0)

0.750692

----------------------------------------------------

line: (264,115) (370,118) (-1.06522,-1.24243,2.006),(-1.046,-1.23809,1.999)

0.00985092

----------------------------------------------------

line: (202,318) (208,159) (0,0,0),(-0.870859,-1.2926,2.087)

0.779295

----------------------------------------------------

line: (464,198) (568,195) (-0.700654,-1.37125,2.214),(0,0,0)

0.769944

----------------------------------------------------

line: (356,101) (477,105) (-1.18376,-1.2926,2.087),(-1.13545,-1.26287,2.039)

0.0283616

----------------------------------------------------

line: (299,106) (468,109) (-1.1263,-1.25853,2.032),(-1.09961,-1.24614,2.012)

0.0147114

----------------------------------------------------

line: (347,191) (470,163) (-0.717631,-1.32852,2.145),(-0.866778,-1.31923,2.13)

0.0747182

----------------------------------------------------

line: (258,43) (532,52) (-1.17538,-1.01512,1.639),(0,0,0)

0.776529

----------------------------------------------------

line: (203,257) (206,157) (0,0,0),(-0.875734,-1.28393,2.073)

0.777074

----------------------------------------------------

line: (308,108) (490,117) (-1.10865,-1.25048,2.019),(0,0,0)

0.835585

----------------------------------------------------

line: (259,52) (602,64) (-1.22467,-1.09316,1.765),(0,0,0)

0.820797

----------------------------------------------------

line: (362,187) (531,145) (-0.734636,-1.31923,2.13),(0,0,0)

0.754992

----------------------------------------------------

line: (348,103) (457,105) (-1.15723,-1.27525,2.059),(-1.13545,-1.26287,2.039)

0.012529

----------------------------------------------------

line: (260,105) (471,108) (-1.13545,-1.26287,2.039),(-1.10865,-1.25048,2.019)

0.0147595

----------------------------------------------------

line: (267,112) (404,119) (-1.08077,-1.24243,2.006),(-1.04083,-1.23809,1.999)

0.0200885

----------------------------------------------------

line: (265,108) (467,118) (-1.10865,-1.25048,2.019),(-1.046,-1.23809,1.999)

0.0319339

----------------------------------------------------

line: (299,108) (440,115) (-1.10865,-1.25048,2.019),(-1.06522,-1.24243,2.006)

0.0220881

----------------------------------------------------

realsense数据分析的更多相关文章

  1. 基于realsense的深度数据分析工具

  2. 基于RealSense的坐姿检测技术

    计算机的飞速普及,让人们将越来越多的工作放在计算机上去完成,各行各业,尤其是程序开发人员.文字工作者,在计算机上的工作时间越来越长,这种情况下不良的坐姿对颈肩腰椎都会产生很大影响,容易导致多种疾病的发 ...

  3. 利用Python进行数据分析 基础系列随笔汇总

    一共 15 篇随笔,主要是为了记录数据分析过程中的一些小 demo,分享给其他需要的网友,更为了方便以后自己查看,15 篇随笔,每篇内容基本都是以一句说明加一段代码的方式, 保持简单小巧,看起来也清晰 ...

  4. 利用Python进行数据分析(10) pandas基础: 处理缺失数据

      数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理 ...

  5. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

  6. 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片

    概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...

  7. 利用Python进行数据分析(9) pandas基础: 汇总统计和计算

    pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索 ...

  8. 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作

    一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...

  9. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

随机推荐

  1. Image Processing and Analysis_15_Image Registration:Mutual-Information-Based Registration of Medical Survey——2003

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  2. SVN版本控制—branches、trunk、tag篇

    新建资源仓库时,可选择默认创建三个文件夹.这三个文件夹分别是[trunk][branches][tags] [Trunk] 一般用于存放目前项目主线,也就是项目所有功能模块的集合体,一整个项目所有代码 ...

  3. BZOJ 3716 [PA2014]Muzeum 贪心SET最大闭合子图

    看上去像是一个最大权闭合子图裸题但是数据太大 我们可以先把守卫的视野转换到第二象限(每个守卫可以看到横坐标比他小 纵坐标比他大的宝物) 然后按X从小到大 再按Y从大到小排 这样我们就可以按SORT序遍 ...

  4. We're sorry but mobile doesn't work properly without JavaScript enabled. Please enable it to continue.

    vue过程中遇见这个问题:We're sorry but mobile doesn't work properly without JavaScript enabled. Please enable ...

  5. Python 常用的ORM框架简介

    ORM概念ORM(Object Ralational Mapping,对象关系映射)用来把对象模型表示的对象映射到基于S Q L 的关系模型数据库结构中去.这样,我们在具体的操作实体对象的时候,就不需 ...

  6. recyclerview + cardview

    https://www.jianshu.com/p/3a1ea6f78ad5http://qwzs112.iteye.com/blog/2235410https://github.com/mukesh ...

  7. Java8-Lambda-No.03

    import java.util.Comparator; import java.util.Objects; import java.util.UUID; import java.util.concu ...

  8. P4178 Tree 点分治

    思路:点分治 提交:1次 题解: 要求权值和\(\leq K\) 的路径,我们可以类比点分治的模板,把长为\(len\)是否存在,改为\(len\)的路径的条数,并用用树状数组维护前缀和,这样就可以求 ...

  9. js 跨域请求原理及常见解决方案

    一.同源策略: 说到跨域请求,首先得说说同源策略: 1995年,同源政策是由 Netscape 公司引入浏览器的.目前,所有浏览器都实行了这个政策. 同源策略是浏览器的一种安全策略,所谓同源是指,域名 ...

  10. leetcode解题报告(9):Implement strStr()

    描述 Implement strStr(). Returns the index of the first occurrence of needle in haystack, or -1 if nee ...