Relatively Prime Powers

CodeForces - 1036F

Consider some positive integer xx. Its prime factorization will be of form x=2k1⋅3k2⋅5k3⋅…x=2k1⋅3k2⋅5k3⋅…

Let's call xx elegant if the greatest common divisor of the sequence k1,k2,…k1,k2,… is equal to 11. For example, numbers 5=515=51, 12=22⋅312=22⋅3, 72=23⋅3272=23⋅32 are elegant and numbers 8=238=23 (GCD=3GCD=3), 2500=22⋅542500=22⋅54 (GCD=2GCD=2) are not.

Count the number of elegant integers from 22 to nn.

Each testcase contains several values of nn, for each of them you are required to solve the problem separately.

Input

The first line contains a single integer TT (1≤T≤1051≤T≤105) — the number of values of nn in the testcase.

Each of the next TT lines contains a single integer nini (2≤ni≤10182≤ni≤1018).

Output

Print TT lines — the ii-th line should contain the number of elegant numbers from 22to nini.

Example

Input

4427210

Output

21616

Note

Here is the list of non-elegant numbers up to 1010:

  • 4=22,GCD=24=22,GCD=2;
  • 8=23,GCD=38=23,GCD=3;
  • 9=32,GCD=29=32,GCD=2.

The rest have GCD=1GCD=1.

题意:

给你一个大于等于2的整数N

让你求2~N 中有多少个整数x,

唯一分解后质因子的幂次分别是e1,e2,e3, 时 gcd(e1,e2,e3)=1

思路:

正难则反,一共有N-1个数,我们只需要减去那些gcd不为1的即可,

我们可以分别枚举gcd为2,3,4,5.,,,, 等等

根据容斥原理,gcd 为i时,他对答案的贡献即为 mu[i]*(n^(1/i) -1 ) mu是莫比乌斯函数。

至于系数为什么恰好是莫比乌斯函数,可以先学这篇博客感受一下:

https://www.cnblogs.com/qieqiemin/p/11537681.html

那么我们来看n^(1/i) -1 是2~n中,质因子分解幂次都为i的数的个数。

即n开i次方-1,先去的1就是就是一个数开任何次方都>=1,数字1被算进去了,需要减去。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int *p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
long long gen(long long n, long long k)
{
long long t = powl(n, 1. / k) - 0.5;
return t + (powl(t + 1, k) - 0.5 <= n);
}
#define N maxn
bool vis[N];
long long prim[N], mu[N], sum[N], cnt;
void get_mu(long long n)
{
mu[1] = 1;
for (long long i = 2; i <= n; i++) {
if (!vis[i]) {mu[i] = -1; prim[++cnt] = i;}
for (long long j = 1; j <= cnt && i * prim[j] <= n; j++) {
vis[i * prim[j]] = 1;
if (i % prim[j] == 0) { break; }
else { mu[i * prim[j]] = -mu[i]; }
}
}
for (long long i = 1; i <= n; i++) { sum[i] = sum[i - 1] + mu[i]; }
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
int t;
get_mu(maxn - 1);
du1(t);
while (t--) {
ll n;
scanf("%lld", &n);
ll ans = n - 1;
for (ll i = 2ll; i <= 64ll; ++i) {
ans += mu[i] * (gen(n, i) - 1ll);
}
printf("%lld\n", ans );
}
return 0;
} inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Relatively Prime Powers CodeForces - 1036F (莫比乌斯函数容斥)的更多相关文章

  1. HDU 6053 TrickGCD 莫比乌斯函数/容斥/筛法

    题意:给出n个数$a[i]$,每个数可以变成不大于它的数,现问所有数的gcd大于1的方案数.其中$(n,a[i]<=1e5)$ 思路:鉴于a[i]不大,可以想到枚举gcd的值.考虑一个$gcd( ...

  2. Tmutarakan Exams URAL - 1091(莫比乌斯函数 || 容斥)

    题意: 求1 - s 中 找出k个数 使它们的gcd  > 1 求这样的k个数的对数 解析: 从每个素数的倍数中取k个数  求方案数 然后素数组合,容斥一下重的 奇加偶减 莫比乌斯函数的直接套模 ...

  3. BZOJ 2440 莫比乌斯函数+容斥+二分

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5473  Solved: 2679[Submit][Sta ...

  4. F - Tmutarakan Exams URAL - 1091 -莫比乌斯函数-容斥 or DP计数

    F - Tmutarakan Exams 题意 : 从 < = S 的 数 中 选 出 K 个 不 同 的 数 并 且 gcd > 1 .求方案数. 思路 :记 录 一 下 每 个 数 的 ...

  5. C - Visible Trees HDU - 2841 -莫比乌斯函数-容斥

    C - Visible Trees HDU - 2841 思路 :被挡住的那些点(x , y)肯定是 x 与 y不互质.能够由其他坐标的倍数表示,所以就转化成了求那些点 x,y互质 也就是在 1 - ...

  6. 完全平方数 HYSBZ - 2440 (莫比乌斯函数容斥)

    完全平方数 HYSBZ - 2440 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些 数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而 这丝毫不影响他对其他 ...

  7. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  8. bzoj2440 完全平方数 莫比乌斯值+容斥+二分

    莫比乌斯值+容斥+二分 /** 题目:bzoj2440 完全平方数 链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第k个小x数 ...

  9. hdu1695(莫比乌斯)或欧拉函数+容斥

    题意:求1-b和1-d之内各选一个数组成数对.问最大公约数为k的数对有多少个,数对是有序的.(b,d,k<=100000) 解法1: 这个能够简化成1-b/k 和1-d/k 的互质有序数对的个数 ...

随机推荐

  1. pig-csm 7.9修改记录

    PigCms\Lib\Action\System\UsersAction.class.php 存在页面广告跳转 bbs.go _pe.cn的问题 tpl\Home\weimob\public_head ...

  2. history 命令

    history 命令用来显示执行过的命令,也可以根据显示的命令重新执行需要的命令. 用法: n 显示n个最近的记录 -a 添加记录到history文件中 -c 将目前shell中的所有history命 ...

  3. 【LOJ】#3043. 「ZJOI2019」线段树

    LOJ#3043. 「ZJOI2019」线段树 计数转期望的一道好题-- 每个点设两个变量\(p,q\)表示这个点有\(p\)的概率有标记,有\(q\)的概率到祖先的路径上有个标记 被覆盖的点$0.5 ...

  4. Linux系列之ftp

    ftp的详细用法,请访问https://www.cnblogs.com/juandx/p/3998418.html 1.Windows搭建IIS类型的ftp服务器 步骤 1.打开控制面板,接着打开程序 ...

  5. PAT B1046.猜拳

    课本AC #include <cstdio> int main() { int n, failA = 0, failB = 0; scanf("%d", &n) ...

  6. linux命令 ip

  7. nginx-consul-template

    概述Consul-template 是 HashiCorp 基于 Consul 所提供的可扩展的工具,通过监听 Consul中的数据变化,动态地修改一些配置文件中地模板.常用于在 Nginx.HAPr ...

  8. Vanya and Scales CodeForces - 552C (思维)

    大意: $101$个砝码, 重$w^0,w^1,...,w^{100}$, 求能否称出重量$m$. w<=3时显然可以称出所有重量, 否则可以暴力双端搜索. #include <iostr ...

  9. 在Windows平台上运行Tomcat

    从之前的学习中知道,可以调用Bootstrap类将Toomcat作为一个独立的应用程序来运行,在Windows平台上,可以调用startup.bat批处理文件来启动Tomcat,或运行shutdown ...

  10. vue开发后台管理系统有感

    使用vue开发后台近一个月,今天终于完成得差不多了,期间也遇到很多的问题,所以利用现在的闲暇时间做个总结 使用element-ui基础,这次使用了vue-element-admin(github地址) ...