【计算机视觉】Opencv中的Face Detection using Haar Cascades

标签(空格分隔): 【图像处理】


声明:引用请注明出处http://blog.csdn.net/lg1259156776/


五种典型的haar-like特征,为何能用来检测人脸,人眼呢?

它给出的一个经验之谈是

1. the region of the eyes is often darker than the region of the nose and cheeks

2. the eyes are darker than the bridge of the nose

但是这样的window在别的地方特征就不明显了,那么如何从160000+的features中选择最好的特征呢:它说采用Adaboost。



We select the features with minimum error rate, which means they are the features that best classifies the face and non-face images.

其实就是adaboost的过程,选择最小错误率的特征,实际上是提高错分图像的权重,然后再进行classification,然后计算新的错误率和新的权重,一直到达到精度或者需要的特征数量足够为止。

所以,最终的分类器实际上是这些弱分类器的加权和,之所以被称之为weak,说的就是它们单独工作可能不能分类,但是一起可以组成较强的分类器。论文中说,甚至200个特征就可以达到95%的精度。

它们最后建立了6000个特征,但是考虑到图像的大部分区域都不是人脸,所以最好还是用一个简单的方法判断是不是人来你,如果不是就直接扔掉,不再对该window进行后续的处理。这样就可以进一步的降低时间消耗。

这种思想真是值得借鉴,因为有点类似TLD中的方差分类器,方差分类器的作用就是通过快速的第一步淘汰掉一半的样本,然后使得进入后续分类器的样本数量减少,有助于提高速率。

利用haar-cascade detection,opencv中可以直接从xml文件中导入训练好的参数,并先进行人脸检测,然后在人脸位置开窗,检测人眼。就这样easy:

import numpy as np
2 import cv2
3
4 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
5 eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
6
7 img = cv2.imread('sachin.jpg')
8 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 1 faces = face_cascade.detectMultiScale(gray, 1.3, 5)
2 for (x,y,w,h) in faces:
3 cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
4 roi_gray = gray[y:y+h, x:x+w]
5 roi_color = img[y:y+h, x:x+w]
6 eyes = eye_cascade.detectMultiScale(roi_gray)
7 for (ex,ey,ew,eh) in eyes:
8 cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
9
10 cv2.imshow('img',img)
11 cv2.waitKey(0)
12 cv2.destroyAllWindows()


2015-11-05 调试记录 张朋艺

【计算机视觉】Opencv中的Face Detection using Haar Cascades的更多相关文章

  1. Object Detection: Face Detection using Haar Cascades

    目录   利用基于Haar特征的级联分类器实现人脸检测:官方教程 目标 学习基于Haar特征的级联分类器(Cascade Callifiers)实现人脸检测: 扩展到人眼检测: 基础知识 Paul V ...

  2. 对OpenCV中Haar特征CvHaarClassifierCascade等结构理解

    首先说一下这个级联分类器,OpenCV中级联分类器是根据VJ 04年的那篇论文(Robust Real-Time Face Detection)编写的,查看那篇论文,知道构建分类器的步骤如下: 1.根 ...

  3. 【计算机视觉】关于OpenCV中GPU配置编译的相关事项

    [计算机视觉]关于OpenCV中GPU配置编译的相关事项 标签(空格分隔): [计算机视觉] 前一段发现了OpenCV中关于GPU以及opencl的相关知识,打算升级一下对OpenCV的使用,但是发现 ...

  4. 【计算机视觉】【并行计算与CUDA开发】OpenCV中GPU模块使用

    CUDA基本使用方法 在介绍OpenCV中GPU模块使用之前,先回顾下CUDA的一般使用方法,其基本步骤如下: 1.主机代码执行:2.传输数据到GPU:3.确定grid,block大小: 4.调用内核 ...

  5. Opencv中integral计算积分图

    Paul Viola和Michael Jones在2001年首次将积分图应用在图像特征提取上,在他们的论文"Rapid Object Detection using a Boosted Ca ...

  6. opencv中的SIFT,SURF,ORB,FAST 特征描叙算子比较

    opencv中的SIFT,SURF,ORB,FAST 特征描叙算子比较 参考: http://wenku.baidu.com/link?url=1aDYAJBCrrK-uk2w3sSNai7h52x_ ...

  7. openCV中IplImage的使用

    http://blog.csdn.net/welcome_xu/article/details/7650680 IplImage结构详细分析   IplImage 结构解读: typedef stru ...

  8. 图像金字塔及其在 OpenCV 中的应用范例(下)

    前言 本文将主要讲解如何使用 OpenCV 实现图像分割,这也是图像金字塔在 OpenCV 中的一个重要应用. 关于图像分割 在计算机视觉领域,图像分割(Segmentation)指的是将数字图像细分 ...

  9. 立体视觉-opencv中立体匹配相关代码

    三种匹配算法比较 BM算法: 该算法代码: view plaincopy to clipboardprint? CvStereoBMState *BMState = cvCreateStereoBMS ...

随机推荐

  1. 3、Spring Boot 2.x 核心技术

    1.3 Spring Boot 核心技术 1.3.1 起步依赖 为项目的依赖管理提供帮助.起步依赖其实就是特殊的Maven,利用了传递依赖解析,把常用库聚合在一起,组成几个为特定功能而定制的依赖. 1 ...

  2. position:absolute 按钮左右分布:left:0 和 right:0 以及雪碧图

    问题:把两个a标签按钮 垂直居中,并且分别把两个按钮放在水平左右两边顶部1,祖父元素设定:position:relative2,把.arrow 设定上下垂直居中 position:absolute; ...

  3. moment.js 日期转换工具

    官方网站: http://momentjs.cn/ 文档: https://itbilu.com/nodejs/npm/4Jxk-Ti-l.html https://www.jianshu.com/p ...

  4. Java进阶知识20 Spring的代理模式

    本文知识点(目录): 1.概念  2.代理模式      2.1.静态代理      2.2.动态代理      2.3.Cglib子类代理 1.概念 1.工厂模式  2. 单例模式 代理(Proxy ...

  5. Cash Machine (POJ 1276)(多重背包——二进制优化)

    链接:POJ - 1276 题意:给你一个最大金额m,现在有n种类型的纸票,这些纸票的个数各不相同,问能够用这些纸票再不超过m的前提下凑成最大的金额是多少? 题解:写了01背包直接暴力,结果T了,时间 ...

  6. hive安装常见错误

    hive编译出错 mvn clean package -DskipTests -Phadoop-2 -Pdist 失败日志1 Failed to execute goal on project hiv ...

  7. 学院管理系统(mysql版)

    需求 用户角色,讲师\学员, 用户登陆后根据角色不同,能做的事情不同,分别如下 讲师视图 管理班级,可创建班级,根据学员qq号把学员加入班级 可创建指定班级的上课纪录,注意一节上课纪录对应多条学员的上 ...

  8. Matlab下imwrite,Uint16的深度图像

    Matlab下imwrite,Uint16的深度图像 1. 在Matlab命令窗口输入命令: help imwrite 会有如下解释: If the input array is of class u ...

  9. Apache Flink - 基本API概念

    Flink程序是实现分布式集合转换的常规程序.集合最初是从源创建的.通过接收器(slink)返回结果,接收器可以将数据写到某个文件或stdout.Flink可以在各种环境(context)中运行,本地 ...

  10. 图的深度优先遍历(DFS)和广度优先遍历(BFS)算法分析

    1. 深度优先遍历 深度优先遍历(Depth First Search)的主要思想是: 1.首先以一个未被访问过的顶点作为起始顶点,沿当前顶点的边走到未访问过的顶点: 2.当没有未访问过的顶点时,则回 ...