asm 为 gcc 中的关键字,asm 表达式为在 C代码中嵌套汇编指令,该表达式只是单纯的替换出汇编代码,并不对汇编代码的含义进行解析。

asm 表达式有两种形式,第二种 asm-qualifiers 包含了 goto 语句。
第一种形式为常见的用法,AssemblerTemplate 和 OutputOperands 必须存在, 其中 Clobbers 存在需要 InputOperands 也出现。

asm asm-qualifiers ( AssemblerTemplate
                 : OutputOperands
                 [ : InputOperands
                 [ : Clobbers ] ])

asm asm-qualifiers ( AssemblerTemplate
                      :
                      : InputOperands
                      : Clobbers
                      : GotoLabels)

Qualifiers 的类型

  • volatile, 避免编译器的优化
  • inline, 内敛限定符,最小的体积
  • goto, 包含跳转指令

参数

  • AssemblerTemplate
    - 汇编指令模板是包含汇编器指令的文字字符串,编辑器替换引用输入,编译器不会解析该指令的含义。
  • OutputOperands
    - 由 AssemblerTemplate 中的指令修改的C变量的逗号分隔列表,允许使用空列表。
  • InputOperands
    - 由 AssemblerTemplate 中的指令读取的C变量的逗号分隔列表,允许使用空列表。
  • Clobbers
    - 用逗号分隔的寄存器列表或由 AssemblerTemplate 修改的值,不能出现在 OutputOperands 和 InputOperands 中被提及,允许使用空列表。
  • GotoLabels
    - 当使用asm的goto形式时,此部分包含 AssemblerTemplate 中的代码可能跳转到的所有C标签的列表。

AssemblerTemplate

汇编指令由一个字符串给出,多条汇编指令结合在一起使用的时候,中间以 \r\t 隔开,如

asm("inc %0\n\tinc %0" : "=r"(res) : "0"(res));

/APP
# 11 "asm.c" 1
        inc %rax
        inc %rax
# 0 "" 2
/NO_APPs

需要转义的字符:%={}|

故在ATT汇编中,对寄存器进行操作的需要双 %%, 如 inc %%rax.

OutputOperands

操作数之间用逗号分隔。 每个操作数具有以下格式:

[ [asmSymbolicName] ] constraint (cvariablename)
  • asmSymbolicName
    - 为操作数指定名称,格式为 %[name]
    c // res = num asm("movq %[num], %[res]" : [res] "=r"(res) : [num] "m"(num));
    - 如果未指定名称使用数字, 从 output 域开始,第一个参数为 %0, 一次类推, 这里的 res 为 %0, num 为 %1
    c // res = num asm("movq %1, %0" : "=r"(res) : "m"(num));
  • constraint
    - 一个字符串常量,用于指定对操作数的存储的 约束, 需要以 "=" 或 "+" 开头
  • cvariablename
    - 指定一个C左值表达式来保存输出,通常是一个变量名。 括号是语法的必需部分

第一个参数为增加可读性使用的,现在我们有代码如下

int64_t res;
int64_t num = 1;

asm("movq %[num], %[res]" : [res] "=r"(res) : [num] "m"(num));
asm("movq %1, %0" : "=r"(res) : "m"(num));
asm("movq %1, %0" : "=m"(res) : "m"(num));
asm("movq %1, %0" : "=r"(res) : "r"(num));

// 对应的汇编代码, 只保留asm表达式中的代码
# 13 "asm.c" 1
        movq -16(%rbp), %rax  // asm-1
 # 0 "" 2
/NO_APP

/APP
 # 15 "asm.c" 1
        movq -16(%rbp), %rax  // asm-2
 # 0 "" 2
/NO_APP

/APP
 # 17 "asm.c" 1
        movq -16(%rbp), -8(%rbp)  // asm-3
 # 0 "" 2
/NO_APP

/APP
 # 19 "asm.c" 1
        movq %rax, %rax  // asm-4
 # 0 "" 2
/NO_APP
  1. 使用名称替换和数字替换效果一样,见 asm-1 和 asm-2
  2. 约束的用法,这里使用比较简单通用的的两种情况,r 为通过寄存器寻址操作,m 通过内存寻址操作,所以看到当约束了 r 就对应寄存器的操作。
  3. 结果保存在 res 也就是 cvariablename 中

InputOperands

输入操作数使C变量和表达式中的值可用于汇编代码。

[ [asmSymbolicName] ] constraint (cexpression)
  • asmSymbolicName 和输出列表的用法完全一致
  • constraint 约束不能使用 = 和 +. 可以使用 "0", 这表明在输出约束列表中(从零开始)的条目,指定的输入必须与输出约束位于同一位置。
int64_t res = 3;
int64_t num = 1;
asm("addq %1, %0" : "=g"(res) : "0"(num));

// 输入输出位置相同
        movq    $3, -8(%rbp)
        movq    $1, -16(%rbp)
        movq    -16(%rbp), %rax
/APP
# 32 "asm.c" 1
        addq %rax, %rax
# 0 "" 2
/NO_APP
  • cexpression 可以不为左值,作为汇编表达式的输入值即可

Clobbers

破坏列表,主要用于指示编译器生成的汇编指令。

从asm表达式中看到输出操作数中列出条目的更改编译器是可以确定的,但内联汇编代码可能不仅对输出进行了修改。 例如,计算可能需要其他寄存器,或者处理器可能会由于特定汇编程序指令而破坏寄存器的值。 为了将这些更改通知编译器,在Clobber列表中列出这些会产生副作用的条目。 破坏列表条目可以是寄存器名称,也可以是特殊的破坏列表项(在下面列出)。 每个内容列表条目都是一个字符串常量,用双引号引起来并用逗号分隔。

  • 寄存器

      ```c
      asm volatile("movc3 %0, %1, %2"
              : /* No outputs. */
              : "r"(from), "r"(to), "g"(count)
              : "%rbx", "%rcx", "%rdx", "memory");
    
      /APP
      # 25 "asm.c" 1
              movc3 %rax, %r8, -72(%rbp)
      # 0 "" 2
      /NO_APP
      ```
    
      可以看到使用到了 rax 寄存器,然后修改程序在 Clobbers 增加 %rax, 结果如下
    
      ```c
      asm volatile("movc3 %0, %1, %2"
              : /* No outputs. */
              : "r"(from), "r"(to), "g"(count)
              : "%rax", "%rbx", "%rcx", "%rdx", "memory");
    
      /APP
      # 25 "asm.c" 1
              movc3 %r8, %r9, -72(%rbp)
      # 0 "" 2
      /NO_APP
      ```
      编译器在产生的汇编代码中就未使用 %rax 寄存器了。
  • 特殊破坏列表项
    - "cc", 表示汇编代码修改了标志寄存器
    - "memory", 为了确保内存中包含正确的值,编译器可能需要在执行asm之前将特定的寄存器值刷新到内存中

编译器为了破坏列表项的值受到破坏,当这些条目是寄存器时,不对其进行使用;为特殊参数时,重新刷新得到最新的值。

约束

  • 一些基础的约束
约束名 说明
whitespace 空白字符被忽略
m 允许使用内存操作数,以及机器通常支持的任何类型的地址
o 允许使用内存操作数,但前提是地址是可偏移的
V 允许使用内存操作数,不可偏移的内存地址,与 "o'互斥
r 允许在通用寄存器中使用的寄存器操作数,其中可以指定寄存器,如 a(%rax), b(%rbx)
i 允许使用立即整数操作数
n 允许使用具有已知数值的立即整数操作数, ‘I’, ‘J’, ‘K’, … ‘P’ 更应该使用 n
F 允许使用浮点立即数
g 允许使用任何寄存器,内存或立即数整数操作数,但非通用寄存器除外
X 允许任何操作数, ‘0’, ‘1’, ‘2’, … ‘9’
p 允许使用有效内存地址的操作数
  • 标识符约束
标识符 说明
= 表示此操作数是由该指令写入的:先前的值将被丢弃并由新数据替换
+ 表示该操作数由指令读取和写入
& 表示(在特定替代方法中)此操作数是早期指令操作数,它是在使用输入操作数完成指令之前写入的,故输入操作数部分不能分配与输出操作数相同的寄存器
% 表示该操作数与后续操作数的可交换指令

内核示例

  1. x86 的内存屏障指令。
// 避免编译器的优化,声明此处内存可能发生破坏
#define barrier() asm volatile("" ::: "memory")
// 在32位的CPU下,lock 指令为锁总线,加上一条内存操作指令就达到了内存屏障的作用,64位的cpu已经有新增的 *fence 指令可以使用
// mb() 执行一个内存屏障作用的指令,为指定CPU操作;破坏列表声明 cc memory 指示避免编译器进行优化
#ifdef CONFIG_X86_32
#define mb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "mfence", \
                                X86_FEATURE_XMM2) ::: "memory", "cc")
#define rmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "lfence", \
                                X86_FEATURE_XMM2) ::: "memory", "cc")
#define wmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "sfence", \
                                X86_FEATURE_XMM2) ::: "memory", "cc")
#else
#define mb()    asm volatile("mfence":::"memory")
#define rmb()   asm volatile("lfence":::"memory")
#define wmb()   asm volatile("sfence" ::: "memory")
#endif
  1. x86 下获取 current 的值
DECLARE_PER_CPU(struct task_struct *, current_task);

#define this_cpu_read_stable(var)   percpu_stable_op("mov", var)

static __always_inline struct task_struct *get_current(void)
{
        return this_cpu_read_stable(current_task);
}

#define percpu_stable_op(op, var)           \
({                          \
        typeof(var) pfo_ret__;              \
        switch (sizeof(var)) {              \
        case 8:                     \
                asm(op "q "__percpu_arg(P1)",%0"    \
                : "=r" (pfo_ret__)          \
                : "p" (&(var)));            \
                break;                  \
        }                       \
        pfo_ret__;                  \
})

current_task 为一个 struct task_struct 类型的指针,追踪宏调用,在x86-64 下命中了 case 8: 的汇编代码, 展开的代码为

asm("mov" "q ""%%""gs" ":" "%" "P1"",%0" : "=r" (pfo_ret__) : "p" (&(current_task)));
// 变换一下为
asm("movq %%gs:%P1, %0" : "=r"(pfo_ret__) : "p"(&(current_task)));

这行代码的含义为将 约束输入部分必须为有效的地址(p约束), 将CPU id(通过段寄存器gs和偏移通过GDT得到,这里后文分析了)通过寄存器(r约束)赋值给 pfo_ret__.

C 表达式中的汇编指令的更多相关文章

  1. C表达式中的汇编指令

    C 表达式中的汇编指令 asm 为 gcc 中的关键字,asm 表达式为在 C代码中嵌套汇编指令,该表达式只是单纯的替换出汇编代码,并不对汇编代码的含义进行解析. asm 表达式有两种形式,第二种 a ...

  2. [zhuan]arm中的汇编指令

    http://blog.csdn.net/qqliyunpeng/article/details/45116615 一. 带点的(一般都是ARM GNU伪汇编指令)   1. ".text& ...

  3. ARM中的---汇编指令

    一. 带点的(一般都是ARM GNU伪汇编指令) 1. ".text".".data".".bss" 依次表示的是"以下是代码段& ...

  4. C/C++中书写汇编指令

    汇编语言的指令格式目前有两种不同的标准:Windows下的汇编语言基本上都遵循Intel风格的语法,比如:MASM.NASM,Unix/Linux下的汇编语言基本上都遵循AT&T风格的语法. ...

  5. ARM中的汇编指令

    Arm指令,32位的指令集,一共有16条的基本指令,每条指令都可以按条件执行, 指令都是32bit的,高四位是条件码[31:28], Thumb指令,16位的指令集,执行效率比arm指令集要低,但是节 ...

  6. Uboot中汇编指令

    LDR(load register)指令将内存内容加载入通用寄存器 ARM是RISC结构,数据从内存到CPU之间的移动只能通过L/S指令来完成,也就是ldr/str指令.比如想把数据从内存中某处读取到 ...

  7. 计算机系统6-> 计组与体系结构3 | MIPS指令集(中)| MIPS汇编指令与机器表示

    上一篇计算机系统5-> 计组与体系结构2 | MIPS指令集(上)| 指令系统从顶层讲解了一个指令集 / 指令系统应当具备哪些特征和工作原理.这一篇就聚焦MIPS指令集(MIPS32),看看其汇 ...

  8. C语言中插入汇编nop指令

    工作过程中,有的时候需要打桩cycle,想在C语言中插入nop指令,可以采取的方法是 头文件中加入#inlude <stdio.h> 定义一个内联函数,然后调用这个函数,不过得测一下平台调 ...

  9. 学习linux内核时常碰到的汇编指令(2)

    转载:http://blog.sina.com.cn/s/blog_4be6adec01007xvh.html JNGE∶指令助记符——(有符号数比较)不大于且不等于转移(等价于JL).当SF和OF异 ...

随机推荐

  1. MyBatis: Invalid bound statement (not found)错误的可能原因

    MyBatis: Invalid bound statement (not found)错误的可能原因 其他原因导致此问题解决参考: 1.检查 xml 文件所在 package 名称是否和 Mappe ...

  2. 设计一个Mypoint类,求两个点之间的距离

    package Test; public class test6 { public static void main(String[] args) { // TODO Auto-generated m ...

  3. 32. ClustrixDB License管理

    一.许可的概述 ClustrixDB必须拥有有效的许可证才能运行.本授权指定: 集群中允许的最大节点数 ClustrixDB将使用的最大核数 在裸金属系统上,ClustrixDB将尝试启用与已授权的物 ...

  4. EntityManager的merge()方法

    EntityManager的merge()方法相当于hibernate中session的saveOrUpdate()方法: 用于实体的插入和更新操作:

  5. VirtualBox:无法访问共享文件夹

    造冰箱的大熊猫@cnblogs 2019/5/9 问题:VirtualBox中安装Linux虚拟机,设置宿主机某个文件夹为虚拟机的共享文件夹.在虚拟机中,该共享文件夹显示为“sf_×××”,打开该文件 ...

  6. HDU 5113 Black And White ( 2014 北京区预赛 B 、搜索 + 剪枝 )

    题目链接 题意 : 给出 n * m 的网格.要你用 k 种不同的颜色填给出的网格.使得相邻的格子颜色不同.若有解要输出具体的方案 分析 : 看似构造.实则搜索.手构构半天没有什么好想法 直接搜就行了 ...

  7. Java当中的IO流(中)

    Java当中的IO流(中) 删除目录 import java.io.File; public class Demo{ public static void main(String[] args){ / ...

  8. webpack4(4.41.2) 打包出现 TypeError this.getResolve is not a function

    报错问题: webpack 打包出现 TypeError: this.getResolve is not a function 环境: nodejs 12.13.0 npm 6.12.0 webpac ...

  9. CF1228F One Node is Gone

    题目链接 问题分析 这题感觉就是有很多种方法,然后一种都写不明白-- 首先分为3种情况: 删了根节点下的一个节点,对应两个答案: 删了一个叶节点,对应一个答案: 删了一个其他节点,对应一个答案. 可以 ...

  10. Java - 单链表

    链表是一种常见的基础数据结构,是一种有序的列表,但不会按照线性顺序存储数据,而是在每一个节点里存储下一个节点的指针(next).链表适合插入.删除,不宜过长,否则会导致遍历性能下降. 以节点方式存储: ...