python数据分析数据标准化及离散化详解

本文为大家分享了python数据分析数据标准化及离散化的具体内容,供大家参考,具体内容如下

标准化

1、离差标准化

是对原始数据的线性变换,使结果映射到[0,1]区间。方便数据的处理。消除单位影响及变异大小因素影响。

基本公式为:    

x'=(x-min)/(max-min)



代码:    

#!/user/bin/env python

#-*- coding:utf-8 -*-

#author:M10

import numpy as np

import pandas as pd

import matplotlib.pylab as plt

import mysql.connector

conn = mysql.connector.connect(host='localhost',

           
user='root',

           
passwd='123456',

           
db='python')#链接本地数据库

sql = 'select price,comment from taob'#sql语句

data = pd.read_sql(sql,conn)#获取数据

#离差标准化

data1 = (data-data.min())/(data.max()-data.min())

print(data1)

运行结果

2、标准差标准化

消除单位影响以及变量自身变异影响。(零-均值标准化) 

基本公式为:

x'=(x-平均数)/标准差

python代码:  
 

#!/user/bin/env python

#-*- coding:utf-8 -*-

#author:M10

import numpy as np

import pandas as pd

import matplotlib.pylab as plt

import mysql.connector

conn = mysql.connector.connect(host='localhost',

           
user='root',

           
passwd='123456',

           
db='python')#链接本地数据库

sql = 'select price,comment from taob'#sql语句

data = pd.read_sql(sql,conn)#获取数据

#标准差标准化

data1 = (data-data.mean())/data.std()

print(data1)

运行结果:

3、小数定标标准化

消除单位影响 

基本公式为: 

其中j=lg(max(|x|)),即以10为底的x的绝对值最大的对数

x' = x/10^j

实现代码为:    

#!/user/bin/env python

#-*- coding:utf-8 -*-

#author:M10

import numpy as np

import pandas as pd

import matplotlib.pylab as plt

import mysql.connector

conn = mysql.connector.connect(host='localhost',

           
user='root',

           
passwd='123456',

           
db='python')#链接本地数据库

sql = 'select price,comment from taob'#sql语句

data = pd.read_sql(sql,conn)#获取数据

#标准差标准化

j = np.ceil(np.log10(data.abs().max()))#进一取整,abs()为取绝对值

data1 = data/10**j

print(data1)

结果:

离散化

离散化是程序设计中一个常用的技巧,它可以有效的降低时间复杂度。其基本思想就是在众多可能的情况中,只考虑需要用的值。离散化可以改进一个低效的算法,甚至实现根本不可能实现的算法

1、等宽离散化

将连续数据按照等宽区间标准离散化数据,好处之一是处理的数据是有限个数据而不是无限多。 

使用pandas的cut方法。非等宽只需要更改cut的第二个参数,例如:第二个参数为[1,100,3000,10000,200000],即划分为了四个区间。

#!/user/bin/env
python
#-*- coding:utf-8 -*-
#author:M10
importnumpy as np
importpandas as pd
importmatplotlib.pylab as
plt
importmysql.connector
conn=mysql.connector.connect(host='localhost',
            user='root',
            passwd='123456',
            db='python')#链接本地数据库
sql='select price,comment
from taob'#sql语句
data=pd.read_sql(sql,conn)#获取数据
#离散化
data1=data['price'].T.values#获取价格的一维数组
lable=['很低','低','中','高','很高']
data2=pd.cut(data1,5,labels=lable)
print(data2)

执行结果:

2、等频率离散化

将相同数量的数据放进一个区间。

3、一维聚类离散化

按属性对数据进行聚类离散。

以上就是本文的全部内容,希望对大家的学习有所帮助


python数据分析数据标准化及离散化详解的更多相关文章

  1. Python做简单的字符串匹配详解

    Python做简单的字符串匹配详解 由于需要在半结构化的文本数据中提取一些特定格式的字段.数据辅助挖掘分析工作,以往都是使用Matlab工具进行结构化数据处理的建模,matlab擅长矩阵处理.结构化数 ...

  2. Python学习一:序列基础详解

    作者:NiceCui 本文谢绝转载,如需转载需征得作者本人同意,谢谢. 本文链接:http://www.cnblogs.com/NiceCui/p/7858473.html 邮箱:moyi@moyib ...

  3. Python学习二:词典基础详解

    作者:NiceCui 本文谢绝转载,如需转载需征得作者本人同意,谢谢. 本文链接:http://www.cnblogs.com/NiceCui/p/7862377.html 邮箱:moyi@moyib ...

  4. python 3.x 爬虫基础---Urllib详解

    python 3.x 爬虫基础 python 3.x 爬虫基础---http headers详解 python 3.x 爬虫基础---Urllib详解 前言 爬虫也了解了一段时间了希望在半个月的时间内 ...

  5. python设计模式之迭代器与生成器详解(五)

    前言 迭代器是设计模式中的一种行为模式,它提供一种方法顺序访问一个聚合对象中各个元素, 而又不需暴露该对象的内部表示.python提倡使用生成器,生成器也是迭代器的一种. 系列文章 python设计模 ...

  6. python+requests接口自动化测试框架实例详解

    python+requests接口自动化测试框架实例详解   转自https://my.oschina.net/u/3041656/blog/820023 摘要: python + requests实 ...

  7. (转)python标准库中socket模块详解

    python标准库中socket模块详解 socket模块简介 原文:http://www.lybbn.cn/data/datas.php?yw=71 网络上的两个程序通过一个双向的通信连接实现数据的 ...

  8. Python网络请求urllib和urllib3详解

    Python网络请求urllib和urllib3详解 urllib是Python中请求url连接的官方标准库,在Python2中主要为urllib和urllib2,在Python3中整合成了urlli ...

  9. python中requests库使用方法详解

    目录 python中requests库使用方法详解 官方文档 什么是Requests 安装Requests库 基本的GET请求 带参数的GET请求 解析json 添加headers 基本POST请求 ...

随机推荐

  1. Vue中在组件销毁时清除定时器(setInterval)

    在mounted中创建并执行定时器,然后在beforeDestroy或者destroyed中清除定时器 <template> <div class="about" ...

  2. SQL:分区拾忆

    1.文件组与文件 数据库属性——可以先添加多个文件组(抽象分割) 单个文件组可以有多文件(物理上的分割),可以添加文件然后指定文件组 例如: 2.分区函数 语法: CREATE PARTITION F ...

  3. Centos 安装JDK(最最最最最方便的方法)

    1.下载rpm安装文件,链接:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 2 ...

  4. SIGAI机器学习第四集 基本概念

    大纲: 算法分类有监督学习与无监督学习分类问题与回归问题生成模型与判别模型强化学习评价指标准确率与回归误差ROC曲线交叉验证模型选择过拟合与欠拟合偏差与方差正则化 半监督学习归类到有监督学习中去. 有 ...

  5. js中数组元素的添加和删除

    js中数组元素常用添加方法是直接添加.push方法以及unshift方法 删除方法则是delete.pop.shift 集修改方法为一身的则是splice 1.添加: (1)直接添加通常都是这样 va ...

  6. java上传1t文件

    我们平时经常做的是上传文件,上传文件夹与上传文件类似,但也有一些不同之处,这次做了上传文件夹就记录下以备后用.此控件PC全平台支持包括mac,linux系统的文件上传,文章末尾将附上控件下载与教程链接 ...

  7. Set集合类

    1.1  Set.add方法——向Set集合添加对象 public static void main(String[] args) {  Set set = new HashSet();      / ...

  8. ROS计算图级

    上一节说到一个 package 可以包含多个可执行文件(节点),可执行文件需要被运行,就要了解ROS的通信架构,也就是计算图级,例: 小萝卜机器人拥有驱动系统,感知系统,控制系统等,要让它从指定位置到 ...

  9. Spring Cloud Gateway(七):路由谓词工厂WeightRoutePredicateFactory

    本文基于 spring cloud gateway 2.0.1 接上文 5.基于路由权重(weigth)的谓词工厂 Spring Cloud Gateway 提供了基于路由权重的断言工厂,配置时指定分 ...

  10. Freestream边界条件【翻译】

    翻译自:CFD-online 帖子地址:http://www.cfd-online.com/Forums/openfoam-solving/93093-freestream-boundary-cond ...