import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2; import java.util.Arrays;
import java.util.List; /**
* reduceByKey(fun,[numTasks]) 算子:
* 根据key将value聚合,然后根据fun进行计算
* 可以设置并行度
* reduceByKey = groupByKey+reduce
*/
public class ReduceByKeyOperator {
public static void main(String[] args){
SparkConf conf = new SparkConf().setMaster("local").setAppName("reduceByKey");
JavaSparkContext sc = new JavaSparkContext(conf); List<Tuple2<String,Integer>> list = Arrays.asList(
new Tuple2<String,Integer>("w1",1),
new Tuple2<String,Integer>("w2",2),
new Tuple2<String,Integer>("w3",3),
new Tuple2<String,Integer>("w2",22),
new Tuple2<String,Integer>("w1",11)
); JavaPairRDD<String,Integer> pairRdd = sc.parallelizePairs(list); JavaPairRDD<String,Integer> result = pairRdd.reduceByKey(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer integer, Integer integer2) throws Exception {
return integer+integer2;
}
},2); result.foreach(new VoidFunction<Tuple2<String, Integer>>() {
@Override
public void call(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {
System.err.println(stringIntegerTuple2._1+":"+stringIntegerTuple2._2);
}
}); }
} 微信扫描下图二维码加入博主知识星球,获取更多大数据、人工智能、算法等免费学习资料哦!

java实现spark常用算子之ReduceByKey的更多相关文章

  1. java实现spark常用算子之Union

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

  2. java实现spark常用算子之TakeSample

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

  3. java实现spark常用算子之SaveAsTextFile

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

  4. java实现spark常用算子之Repartitions

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

  5. java实现spark常用算子之mapPartitionsWithIndex

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

  6. java实现spark常用算子之map

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

  7. java实现spark常用算子之intersection

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

  8. java实现spark常用算子之frist

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

  9. java实现spark常用算子之flatmap

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

随机推荐

  1. centos系统python2.7更新到3.5

    1. 下载Python-3.5.2 wget https://www.python.org/ftp/python/3.5.2/Python-3.5.2.tgz 2.安装 (报错no acceptabl ...

  2. 解决“mysql不是内部/外部命令,也不是可执行程序,也不是批处理文件”

    解决方案: 1.切换到mysql.exe文件所在目录: 2.将mysql.exe文件所在目录添加到操作系统内的环境变量中: 如何添加环境变量: 1.右击“我的电脑”——>属性——>高级—— ...

  3. SpringBoot几种定时任务的实现方式 和多线程执行任务

    定时任务实现的几种方式: Timer:这是java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务.使用这种方式可以让你的程序按照某一个频度执行, ...

  4. jQuery常用Method-API

    目的:对web页面(HTML/JSP/XML)中的任何标签,属性,内容进行增删改查 (1)DOM简述与分类 (A)DOM是一种W3C官方标准规则,可访问任何标签语言的页面(HTML/JSP/XML) ...

  5. Svn CleanUp failed–previous operation has not finished

    Svn CleanUp遇到错误,解决办法: 下载sqlite3.exe 放至要CleanUp的目录中, 命令行进入sqlite3.exe所在目录, 连接数据库 删除工作队列,(此时再CleanUp提示 ...

  6. mysql锁表机制分析

    http://blog.csdn.net/u010942020/article/details/51925653

  7. plsql 查询中文乱码问题

    记录一下解决中文乱码 设置环境变量 set path=E:\app\Administrator\product\instantclient_10_2 set TNS_ADMIN=E:\app\Admi ...

  8. B. Grow The Tree Codeforces Round #594 (Div. 2)

    Gardener Alexey teaches competitive programming to high school students. To congratulate Alexey on t ...

  9. Leetcode之动态规划(DP)专题-121. 买卖股票的最佳时机(Best Time to Buy and Sell Stock)

    Leetcode之动态规划(DP)专题-121. 买卖股票的最佳时机(Best Time to Buy and Sell Stock) 股票问题: 121. 买卖股票的最佳时机 122. 买卖股票的最 ...

  10. 决策树、随机森林与k-means聚类算法

    决策树的构建满足信息熵增益最大化原则 决策树的优点: 可解释性高 能处理非线性的数据 不需要数据归一化 可以用于特征工程 对数据分布没有偏好 广泛使用 容易软件实现 可以转化为规则 决策树的弱点 启发 ...