【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)
1016: [JSOI2008]最小生成树计数
Description
现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的
最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生
成树可能很多,所以你只需要输出方案数对31011的模就可以了。Input
第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整
数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0
00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。Output
输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。
Sample Input
4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1Sample Output
8HINT
Source
【分析】
不知道结论是不可以做的吧?表示也不会矩阵树定理。。dfs方法也要知道一些证明才能说明其准确性。
【以后的博客都要留坑了?
安利两种题解:
1、我的打法:(不看都不知道为什么这样做是对的)
https://blog.sengxian.com/solutions/bzoj-1016
http://www.cnblogs.com/lcf-2000/p/5575412.html
2、矩阵树(没打这种,还不会)
http://blog.csdn.net/jarily/article/details/8902509
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 1100
#define Maxm 10100
#define Mod 31011 struct node
{
int x,y,c;
}t[Maxm]; bool cmp(node x,node y) {return x.c<y.c;}
int a[Maxm],l[Maxm],r[Maxm],fa[Maxn]; int ffa(int x)
{
return x==fa[x]?x:ffa(fa[x]);
} int ct;
void ffind(int x,int nw,int h)
{
if(nw==r[x]+)
{
if(h==a[x]) ct++;
return;
}
int x1=ffa(t[nw].x),x2=ffa(t[nw].y);
if(x1!=x2)
{
fa[x1]=x2;
ffind(x,nw+,h+);
fa[x1]=x1;
}
ffind(x,nw+,h);
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&t[i].x,&t[i].y,&t[i].c);
}
sort(t+,t++m,cmp);
int cnt=,tot=;
for(int i=;i<=n;i++) fa[i]=i;
for(int i=;i<=m;i++)
{
if(i==||t[i].c!=t[i-].c)
{
r[cnt]=i-;l[++cnt]=i;
a[cnt]=;
}
int x1=ffa(t[i].x),x2=ffa(t[i].y);
if(x1!=x2)
{
fa[x1]=x2;
a[cnt]++;
tot++;
} }r[cnt]=m;
if(tot!=n-) printf("0\n");
else
{
for(int i=;i<=n;i++) fa[i]=i;
int ans=;
for(int i=;i<=cnt;i++)
{
ct=;
ffind(i,l[i],);
ct%=Mod;
ans=ans*ct;ans%=Mod;
for(int j=l[i];j<=r[i];j++)
{
int x1=ffa(t[j].x),x2=ffa(t[j].y);
if(x1!=x2) fa[x1]=x2;
}
}
printf("%d\n",ans);
}
return ;
}
2017-02-28 13:58:04
【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)的更多相关文章
- bzoj1016 [JSOI2008]最小生成树计数——Kruskal+矩阵树定理
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 从 Kruskal 算法的过程来考虑产生多种方案的原因,就是边权相同的边有一样的功能, ...
- 洛谷4208 JSOI2008最小生成树计数(矩阵树定理+高斯消元)
qwq 这个题目真的是很好的一个题啊 qwq 其实一开始想这个题,肯定是无从下手. 首先,我们会发现,对于无向图的一个最小生成树来说,只有当存在一些边与内部的某些边权值相同的时候且能等效替代的时候,才 ...
- BZOJ 1016 最小生成树计数(矩阵树定理)
我们把边从小到大排序,然后依次插入一种权值的边,然后把每一个联通块合并. 然后当一次插入的边不止一条时做矩阵树定理就行了.算出有多少种生成树就行了. 剩下的交给乘法原理. 实现一不小心就会让程序变得很 ...
- BZOJ 2467: [中山市选2010]生成树(矩阵树定理+取模高斯消元)
http://www.lydsy.com/JudgeOnline/problem.php?id=2467 题意: 思路:要用矩阵树定理不难,但是这里的话需要取模,所以是需要计算逆元的,但是用辗转相减会 ...
- 【BZOJ 1016】 [JSOI2008]最小生成树计数(matrix-tree定理做法)
[题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1016 [题意] [题解] /* 接上一篇文章; 这里用matrix-tree定理搞最小 ...
- 【BZOJ 1016】[JSOI2008]最小生成树计数(搜索+克鲁斯卡尔)
[题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1016 [题意] [题解] /* 两个最小生成树T和T'; 它们各个边权的边的数目肯定是 ...
- [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- BZOJ 4031: [HEOI2015]小Z的房间 [矩阵树定理 行列式取模]
http://www.lydsy.com/JudgeOnline/problem.php?id=4031 裸题........ 问题在于模数是$10^9$ 我们发现消元的目的是让一个地方为0 辗转相除 ...
- BZOJ 4031: [HEOI2015]小Z的房间 (矩阵树定理 板题)
背结论 : 度-邻 CODE1 O(n3logn)O(n^3logn)O(n3logn) #include <bits/stdc++.h> using namespace std; typ ...
随机推荐
- ② 设计模式的艺术-02.简单工厂(Simple Factory)模式
工厂模式 实现了创建者和调用者的分离. 详细分类:简单工厂模式.工厂方法模式.抽象工厂模式 面向对象设计的基本原则 OCP(开闭原则,Open-Closed Principle):一个软件的实体应当对 ...
- python初步学习-python函数(一)
python 函数 函数是组织好的,可重复使用的,用来实现单一或者相关联功能的代码段. 函数能提高应用的模块性和代码的重复利用率. 函数定义 python中函数定义有一些简单的规则: 函数代码块以de ...
- VueJS 获取并编译远程模板 解决方案(简单版)
原文链接:https://savokiss.com/tech/vuejs-remote-template.html see: forum
- 超简便安装mysql
CentOS7默认数据库是mariadb,配置等用着不习惯,因此决定改成mysql,但是CentOS7的yum源中默认好像是没有mysql的.为了解决这个问题,我们要先下载mysql的repo源. 1 ...
- MySQL sleep过多解决方法
睡眠连接过多,会对mysql服务器造成什么影响? 严重消耗mysql服务器资源(主要是cpu, 内存),并可能导致mysql崩溃. 造成睡眠连接过多的原因? 1. 使用了太多持久连接(个人觉得,在高并 ...
- 获取网站所有的url正则表达式
C# string pattern1 = @"(?is)<[^>]*?src=(['""\s]?)(?<src>[^'""\s ...
- 190.Reverse Bits---位运算
题目链接:https://leetcode.com/problems/reverse-bits/description/ 题目大意:将数值的二进制反转. 法一(借鉴):由于是无符号32位整型,当二进制 ...
- spring-mybatis.xml配置
1.自动扫描 <context:component-scan base-package="com.javen" /> 2.引入配置文件 <bean id=&quo ...
- ECharts图表tooltip显示时超出canvas图层解决方法
我们在做ECharts图表的时候可能会遇到tooltip显示时超出了canvas图层范围,并且被其它z-index较高的div容器遮盖,这是悬浮展示信息就看不全,我们根据官网文档的配置项查询发现con ...
- 防范XSS跨站2
原文:http://blog.csdn.net/joeyon1985/article/details/43527987 在前面的一篇文章中,讲到了java web应用程序防止 csrf 攻击的方法,参 ...