[POJ 2559]Largest Rectangle in a Histogram

Description

A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:

Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

Input

The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1<=n<=100000. Then follow n integers h1,...,hn, where 0<=hi<=1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.

Output

For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

Solution

方法一:记录左、右第一个比每个元素低的元素

1.从左往右做单增栈,弹栈时r[stack[top--]]=当前元素地址,即各个元素右侧第一个比其低的元素地址;最后清栈时站内元素的r为n+1;

2.从右往左做单增栈,弹栈时l[stack[top--]]=当前元素地址,即各个元素左侧第一个比其低的元素地址;最后清栈时站内元素的l为0;

3.对于每个元素计算其对应的最大面积max[i]=h[i]*(r[i]-l[i]),对所有max[i]取最大值即可;

鉴于本方法便于自己实现,再此不给出对应代码;

方法二:从左往右或从右往左进行一次单增栈,每次弹栈时更新最大面积

1.栈内每个单位存入两个元素:该单位高度height和对应可控宽度length,对于每个大于栈顶直接入栈的元素,stack[i].length=1;

2.对于需要先弹栈再入栈的元素,其length=弹栈所有元素length之和+1,因为被弹栈的元素的高度均≥当前元素,所以其可控范围应加上被其弹栈元素的length;

3.在弹栈过程中,记录一个temp为本次弹栈到当前为止弹出的宽度,因为为单增栈,所以每个高度均可控其后被弹栈元素的宽度,所以其对应的面积为s=temp*h[i],取max更新ans即可;

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std; struct node{
long long height,length;
}stack[100100];
long long n,m,i,j,k,h[100100]; inline long long read(){
long long x=0;
bool f=true;
char c;
c=getchar();
while(c<'0'||c>'9'){
if(c=='-') f=false;
c=getchar();
}
while(c>='0'&&c<='9'){
x=(x<<1)+(x<<3)+(c^48);
c=getchar();
}
return f?x:-x;
} void calc(){
long long top=1,maxs=0,temp=0;
for(i=1;i<=n;++i) h[i]=read();
stack[1].height=h[1];
stack[1].length=1;
for(i=2;i<=n;++i){
temp=0;
while(stack[top].height>=h[i]&&top>0){
temp+=stack[top].length;
maxs=max(maxs,stack[top--].height*temp);
}
stack[++top].height=h[i];
stack[top].length=temp+1;
}
temp=0;
while(top>0){
temp+=stack[top].length;
maxs=max(maxs,stack[top--].height*temp);
}
printf("%lld\n",maxs);
return;
} int main(){
for(;;){
n=read();
if(!n)return 0;
calc();
}
return 0;
}

单调栈基础知识部分可以参考我的题解:http://www.cnblogs.com/COLIN-LIGHTNING/p/8474668.html

[POJ 2559]Largest Rectangle in a Histogram 题解(单调栈)的更多相关文章

  1. poj 2559 Largest Rectangle in a Histogram (单调栈)

    http://poj.org/problem?id=2559 Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 6 ...

  2. 题解报告:poj 2559 Largest Rectangle in a Histogram(单调栈)

    Description A histogram is a polygon composed of a sequence of rectangles aligned at a common base l ...

  3. POJ 2559 Largest Rectangle in a Histogram(单调栈)

    [题目链接] http://poj.org/problem?id=2559 [题目大意] 给出一些宽度为1的长方形下段对其后横向排列得到的图形,现在给你他们的高度, 求里面包含的最大长方形的面积 [题 ...

  4. POJ 2559 Largest Rectangle in a Histogram(单调栈) && 单调栈

    嗯... 题目链接:http://poj.org/problem?id=2559 一.单调栈: 1.性质: 单调栈是一种特殊的栈,特殊之处在于栈内的元素都保持一个单调性,可能为单调递增,也可能为单调递 ...

  5. poj 2559 Largest Rectangle in a Histogram 栈

    // poj 2559 Largest Rectangle in a Histogram 栈 // // n个矩形排在一块,不同的高度,让你求最大的矩形的面积(矩形紧挨在一起) // // 这道题用的 ...

  6. stack(数组模拟) POJ 2559 Largest Rectangle in a Histogram

    题目传送门 /* 题意:宽度为1,高度不等,求最大矩形面积 stack(数组模拟):对于每个a[i]有L[i],R[i]坐标位置 表示a[L[i]] < a[i] < a[R[i]] 的极 ...

  7. POJ 2559 Largest Rectangle in a Histogram -- 动态规划

    题目地址:http://poj.org/problem?id=2559 Description A histogram is a polygon composed of a sequence of r ...

  8. poj 2559 Largest Rectangle in a Histogram - 单调栈

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19782 ...

  9. POJ 2559 Largest Rectangle in a Histogram(单调栈)

    传送门 Description A histogram is a polygon composed of a sequence of rectangles aligned at a common ba ...

随机推荐

  1. selenium Object Page 设计模式理解及实现!

    Page Object模式是Selenium中的一种测试设计模式,主要是将每一个页面设计为一个Class,其中包含页面中需要测试的元素(按钮,输入框,标题 等),这样在Selenium测试页面中可以通 ...

  2. 使用TestNG 和 CSV文件进行数据驱动

    package testNGPractice; import java.io.BufferedReader; import java.io.FileInputStream; import java.i ...

  3. php中ob缓存机制

    1.ob缓存运行方式 2.注意:在程序中如果开启ob_start(),所有的echo输出都会保存到ob缓存中,可以使用ob系列函数进行操作,如果没有,默认情况下,在程序执行结束,会把缓存中的数据发送给 ...

  4. PHP 在windows下配置sendmail,通过 mail() 函数发送邮件

    php mail()函数在windows不能用,需要安装sendmail. 1. 从http://glob.com.au下载sendmail.zip 2. 解压sendmail.zip到目录下(最好使 ...

  5. RAD Studio 10.3 Rio (BCB & Dephi) 发布啦

    期盼已久的RAD Studio 10.3 Rio  终于发布了: 下载链接:http://altd.embarcadero.com/download/radstudio/10.3/delphicbui ...

  6. AngularJS中$apply

    $apply是$scope下的特性,传播model的变化.下面的例子两秒之后控制台会显示出已经更新的model, 然而, view 并没有更新.$digest循环不会只运行一次.在当前的一次循环结束后 ...

  7. Javascript面向对象三大特性(封装性、继承性、多态性)详解及创建对象的各种方法

    Javascript基于对象的三大特征和C++,Java面向对象的三大特征一样,都是封装(encapsulation).继承(inheritance )和多态(polymorphism ).只不过实现 ...

  8. 【刷题】HDU 6184 Counting Stars

    Problem Description Little A is an astronomy lover, and he has found that the sky was so beautiful! ...

  9. 【BZOJ2879】【NOI2012】美食节(费用流)

    [BZOJ2879][NOI2012]美食节(费用流) 题面 BZOJ 洛谷 题解 一眼就会思路了吧. 把每个厨师拆点,拆分为他最多能要做的菜的个数,即\(\sum p_i\) 然后把每个菜向厨师的每 ...

  10. Red Hat下升级python的问题

    分为两部分: 一,升级Python 安装的包的渠道(传送门),安装过程的渠道(传送门). 二.涉及的问题 1.yum不能使用 解决办法(传送门),其中的部分就行.