字典对象在Python中作为最常用的数据结构之一,和数字、字符串、列表、元组并列为5大基本数据结构,字典中的元素通过键来存取,而非像列表一样通过偏移存取。笔者总结了字典的一些常用Pyhonic用法,这是字典的Pythonic用法的上篇

0. 使用 in/not in 检查 key 是否存在于字典

判断某个 key 是否存在于字典中时,一般初学者想到的方法是,先以列表的形式把字典所有键返回,再判断该key是否存在于键列表中:

dictionary = {}

keys = dictionary.keys()

for k in keys:

if key == k:

print True

break

更具Pythonic的用法是使用in关键字来判断 key 是否 存在于字典中:

if key in dictionary:

print True

else:

print False

1. 使用 setdefault() 初始化字典键值

使用字典的时候经常会遇到这样一种应用场景:动态更新字典,像如下代码,如果 key 不在 dictionary 中那么就添加它并把它对应的值初始为空列表 [] ,然后把元素 append 到空列表中:

dictionary = {}

if "key" not in dictionary:

dictionary["key"] = []

dictionary["key"].append("list_item")

尽管这段代码没有任何逻辑错误,但是我们可以使用setdefault来实现更Pyhonic的写法:

dictionary = {}

dictionary.setdefault("key", []).append("list_item")

字典调用 setdefault 方法时,首先检查 key 是否存在,如果存在该方法什么也不做,如果不存在 setdefault 就会创建该 key,并把第二个参数[]作为 key 对应的值。

2. 使用 defaultdict() 初始化字典

初始化一个字典时,如果初始情况下希望所有 key 对应的值都是某个默认的初始值,比如有一批用户的信用积分都初始为100,现在想给 a 用户增加10分

d = {}

if 'a' not in d:

d['a'] = 100

d['a'] += 10

同样这段代码也没任何问题,换成更pyhtonic的写法是:

from collections import defaultdict

d = defaultdict(lambda: 100)

d['a'] += 10

defaultdict 是位于 collections 模块下,它是 dict 类的子类,语法结构是:

class collections.defaultdict([default_factory[, ...]])

第一个参数default_factory是一个工厂方法,每次初始化某个键的时候将会被调用,value就是default_factory返回的值,剩下的参数和dict()函数接收的参数一样

3. 使用 iteritems() 迭代大数据

迭代大数据字典时,如果是使用 items() 方法,那么在迭代之前,迭代器迭代前需要把数据完整地加载到内存,这种方式不仅处理非常慢而且浪费内存,下面代码约占1.6G内存(为什么是1.6G?可以参考:

http://stackoverflow.com/questions/4279358/pythons-underlying-hash-data-structure-for-dictionaries)

d = {i: i * 2 for i in xrange(10000000)}

for key, value in d.items():

print("{0} = {1}".format(key, value))

而使用 iteritem() 方法替换 items() ,最终实现的效果一样,但是消耗的内存降低50%,为什么差距那么大呢?因为 items() 返回的是一个 list,list 在迭代的时候会预先把所有的元素加载到内存,而 iteritem() 返回的一个迭代器(iterators),迭代器在迭代的时候,迭代元素逐个的生成。

d = {i: i * 2 for i in xrange(10000000)}

for key, value in d.iteritem():

print("{0} = {1}".format(key, value))

4. 高效合并字典

普通方法

合并多个字典的时候可以用一行代码实现:

x = {'a': 1, 'b': 2}

y = {'b': 3, 'c': 4}

z = dict(x.items() + y.items())

这种写法看起来很Pythonic,但仔细分析的话,它的执行效率并不高,items()方法在python2.7中返回的是列表对象,两个列表相加得到一个新的列表,这样内存中存在3个列表对象,如果两个列表的大小都是1G,那么执行这段代码需要占用4G的空间来创建这个字典。此外这段代码在Python3中会报错,因为python3中items()返回的是dict_items对象,而不是列表。

>>> c = dict(a.items() + b.items())

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'dict_items' and 'dict_items'

在python3中,你需要明确地强制转换成list对象:

z = dict(list(x.items()) + list(y.items()))

Pythonic方法

在Python3.5中提供了一种全新的Pythonic方法:

z = {**x, **y}

不过考虑到大部分系统还是基于Python2,所以一种更兼容的pythonic方法是:

z = x.copy()

z.update(y)

当然,你可以把它封装成一个函数:

def merge_dicts(*dict_args):

'''

可以接收1个或多个字典参数

'''

result = {}

for dictionary in dict_args:

result.update(dictionary)

return result

z = merge_dicts(a, b, c, d, e, f, g)

其他方法

还有其他方式来合并字典,但是性能不一定是最优的,比如: python2.7可以支持字典推导式

{k: v for d in dicts for k, v in d.items()}

python2.6及以下版本使用

{k: v for d in dicts for k, v in d.items()}

性能对比

import timeit

>>> min(timeit.repeat(lambda: {**x, **y}))  # python3.5

0.4094954460160807

>>> min(timeit.repeat(lambda: merge_two_dicts(x, y)))

0.5726828575134277

>>> min(timeit.repeat(lambda: {k: v for d in (x, y) for k, v in d.items()} ))

1.163769006729126

>>> min(timeit.repeat(lambda: dict((k, v) for d in (x, y) for k, v in d.items())))

2.2345519065856934

直接使用python3.5中的{**x, **y}是最快的,使用update次之,用字典推导式相对来说是最慢的。

字典对象的 Pythonic 用法(上篇)的更多相关文章

  1. 字典对象的 Pythonic 用法(上篇:转载)

    转载:https://mp.weixin.qq.com/s?timestamp=1498528588&src=3&ver=1&signature=DfFeOFPXy44ObCM ...

  2. Python成长之路第二篇(3)_字典的置函数用法

    字典的置函数用法(字典dict字典中的key不可以重复) class dict(object): """ dict() -> new empty dictionar ...

  3. Objective-c 字典对象

    oc 中的 NSDictionary 的作用同 java 中的字典类相同,提供了 “键-值”对的组合.比如,是用字典类实现对学生姓名和学号的存放,编号是一个键(唯一性),姓名是值.它的方法有: 下面通 ...

  4. VBS使用Scripting.Dictionary字典对象

    Scripting.Dictionary是个很有用的组件,其创建了类似于Key索引对应Value值的字典对象,并且在其内部提供了快速索引访问的机制,可以让我们通过Key直接索引到指定的Value,比遍 ...

  5. python 基础学习(字典对象,set对象)

    1.dict 字典对象 a.定义对象 d={'a':14,'b':12}b.通过key获取value d['a'] 方法1.判断key是否存在 if 'a' in d: d['a']方法2:通过用ge ...

  6. JavaScript中创建字典对象(dictionary)实例

    这篇文章主要介绍了JavaScript中创建字典对象(dictionary)实例,本文直接给出了实现的源码,并给出了使用示例,需要的朋友可以参考下 对于JavaScript来说,其自身的Array对象 ...

  7. DOM Style样式对象的详细用法

    DOM Style样式对象的详细用法 HTML Style样式比较复杂,相应访问.修改方法也有所差异.参考相关资料,整理如下. 典型Html文件如下,有三种定义方式. <head>     ...

  8. python爬虫requests json与字典对象互相转换

    import requests import json ''' json.loads(json_str) json字符串转换成字典 json.dumps(dict) 字典转换成json字符串 ''' ...

  9. 有一个字典对象,d = {'a':1,'b':2},请用尽量简洁的代码将d转换成{1: 'a', 2: 'b'}

    题目:有一个字典对象,d = {'a':1,'b':2},请用尽量简洁的代码将d转换成{1: 'a', 2: 'b'} 第一种方法: d = {'a': 1, 'b': 2}d = {value: k ...

随机推荐

  1. JS中数组和字符串具有的方法,以及substring,substr和slice的用法与区别

     String 对象属性 属性 描述 constructor 对创建该对象的函数的引用 length 字符串的长度 prototype 允许您向对象添加属性和方法 String 对象方法 方法 描述 ...

  2. HTML option 标签的 selected 属性

    HTML option 标签的 selected 属性 http://www.w3school.com.cn/tags/att_option_selected.asp 1.一般做WEB的时候,Chro ...

  3. Spring Boot系列教程七:Spring boot集成MyBatis

    一.创建项目         项目名称为 “springboot_mybatis_demo”,创建过程中勾选 “Web”,“MyBatis”,“MySQL”,第一次创建Maven需要下载依赖包(耐心等 ...

  4. spark(三)spark sql

    一.DataFrame 1.DataFrame是组织成命名列的数据的分布式集合,类似于关系型数据库的一张表,如果没有列名就等于RDD,如果有列名,就是DataFrames DataFrames可以从各 ...

  5. java Ftp上传创建多层文件的代码片段

    StringBuilder sBuilder = new StringBuilder();            String[] pah = path.split("/");   ...

  6. 机器学习算法的Python实现 (1):logistics回归 与 线性判别分析(LDA)

    先收藏............ 本文为笔者在学习周志华老师的机器学习教材后,写的课后习题的的编程题.之前放在答案的博文中,现在重新进行整理,将需要实现代码的部分单独拿出来,慢慢积累.希望能写一个机器学 ...

  7. 【OpenCV】SIFT原理与源码分析:关键点搜索与定位

    <SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一步<DoG尺度空间构造>,我们得到了 ...

  8. [CQOI2009] 中位数 (前缀和)

    [CQOI2009] 中位数 题目描述 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. 输入输出格式 输入格式: 第一行 ...

  9. [LeetCode] Gas Station,转化为求最大序列的解法,和更简单简单的Jump解法。

    LeetCode上 Gas Station是比较经典的一题,它的魅力在于算法足够优秀的情况下,代码可以简化到非常简洁的程度. 原题如下 Gas Station There are N gas stat ...

  10. JS零碎小知识

    filter()方法对数组进行过滤,生成新数组 var aqiNewData = aqiData.filter(function(data){ return data[1]>60; }); // ...