题目链接

题意

给定二维坐标上的\(n\)个点,过每个点可以 画一条水平线 或 画一条竖直线 或 什么都不画,并且若干条重合的直线被看做同一条。问共可能得到多少幅不同的画面?

题解

官方题解

仆の瞎扯

bzoj 1854的并查集思路蜜汁契合

// 看完了题解的我这样想道

首先显然可以将图分为若干个联通块。

且慢,哪里来的图?

那就先考虑建图?

不急不急,先来想想看每一个联通块的性质。

如果该联通块中有环的话,肯定每条边都能取到;如果联通块是一棵树,那么必有一条边取不到(具体阐述见上bzoj 1854),所以只需要知道

  1. 这个联通块中有多少条边
  2. 这个联通块是不是环

这两个信息就可以了

那么可以直接上并查集。

什么样的点可以并到一起呢?横坐标相同的或者纵坐标相同的。

有没有环怎么维护呢?看有没有加进去的边的端点本身就在一个集合里。

联通块中边的数目又怎么知道呢?这倒还挺有意思的,其实只要直接看出现过多少个横坐标或者纵坐标就可以了,因为一个横坐标或者一个纵坐标就代表一条可以选的直线,所以这块联通块的贡献就是\(2^{x+y}或者2^{x+y}-1\)。

然后呢?就做完了。

然而呢?比赛结束。一天了。

然后再推荐一下葫芦爷的题解太强辣

Code

#include <bits/stdc++.h>
#define maxn 100010
using namespace std;
typedef long long LL;
const LL mod = 1e9+7;
struct node {
int x, y;
}a[maxn];
int fa[maxn], sz[maxn], f[maxn], id[maxn], m[maxn];
bool circ[maxn], vis[maxn];
vector<int> v[maxn];
set<int> sx, sy;
bool cmp1(int i, int j) {
return a[i].x < a[j].x || (a[i].x == a[j].x && a[i].y < a[j].y);
}
bool cmp2(int i, int j) {
return a[i].y < a[j].y || (a[i].y == a[j].y && a[i].x < a[j].x);
}
LL poww(LL a, LL b) {
LL ret = 1;
while (b) {
if (b & 1) (ret *= a) %= mod;
(a *= a) %= mod;
b >>= 1;
}
return ret;
}
int find(int x) { return fa[x] == x ? x : fa[x] = find(fa[x]); }
void unionn(int a, int b) {
a = find(a), b = find(b);
if (a == b) { circ[a] = true; return; }
if (sz[a] > sz[b]) swap(a, b);
fa[a] = b; sz[b] += sz[a];
circ[b] |= circ[a];
}
int main() {
int n;
scanf("%d", &n);
for (int i = 0; i < n; ++i) {
scanf("%d%d", &a[i].x, &a[i].y);
}
for (int i = 0; i < n; ++i) id[i] = i;
for (int i = 0; i < n; ++i) fa[i] = i, sz[i] = 1; sort(id, id+n, cmp1);
for (int i = 1; i < n; ++i) {
if (a[id[i]].x == a[id[i-1]].x) unionn(id[i-1], id[i]);
}
sort(id, id+n, cmp2);
for (int i = 1; i < n; ++i) {
if (a[id[i]].y == a[id[i-1]].y) unionn(id[i-1], id[i]);
}
for (int i = 0; i < n; ++i) fa[i] = find(i); int tot = -1;
for (int i = 0; i < n; ++i) {
if (!vis[fa[i]]) vis[fa[i]] = true, f[++tot] = fa[i], m[fa[i]] = tot;
v[m[fa[i]]].push_back(i);
}
LL ans = 1;
for (int i = 0; i <= tot; ++i) {
sx.clear(), sy.clear();
for (auto idx : v[i]) {
sx.insert(a[idx].x), sy.insert(a[idx].y);
}
LL mul = poww(2, sx.size()+sy.size());
if (!circ[f[i]]) (mul += mod-1) %= mod;
(ans *= mul) %= mod;
}
printf("%I64d\n", ans);
return 0;
}

Codeforces 870E Points, Lines and Ready-made Titles 计数的更多相关文章

  1. Codeforces 870E Points, Lines and Ready-made Titles:并查集【两个属性二选一】

    题目链接:http://codeforces.com/problemset/problem/870/E 题意: 给出平面坐标系上的n个点. 对于每个点,你可以画一条经过这个点的横线或竖线或什么都不画. ...

  2. codeforces 872E. Points, Lines and Ready-made Titles

    http://codeforces.com/contest/872/problem/E E. Points, Lines and Ready-made Titles time limit per te ...

  3. Codeforces Round #440 (Div. 1, based on Technocup 2018 Elimination Round 2) C - Points, Lines and Ready-made Titles

    C - Points, Lines and Ready-made Titles 把行列看成是图上的点, 一个点(x, y)就相当于x行 向 y列建立一条边, 我们能得出如果一个联通块是一棵树方案数是2 ...

  4. Codeforces 871C 872E Points, Lines and Ready-made Titles

    题 OvO http://codeforces.com/contest/871/problem/C ( Codeforces Round #440 (Div. 1, based on Technocu ...

  5. 【题解】Points, Lines and Ready-made Titles Codeforces 871C 图论

    Prelude 真是一道好题,然而比赛的时候花了太多时间在B题上,没时间想这个了QAQ. 题目链接:萌萌哒传送门(.^▽^) Solution 观察样例和样例解释,我们发现,假如有四个点,恰好占据在某 ...

  6. CodeForces 19D Points

    Pete and Bob invented a new interesting game. Bob takes a sheet of paper and locates a Cartesian coo ...

  7. R语言:多个因变量时,如何在plot函数中画多条曲线(plot,points,lines,legend函数)

    最近阅读一篇文献<Regional and individual variations in the function of the human eccrine sweat gland>, ...

  8. CodeForces 19D Points (线段树+set)

    D. Points time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...

  9. 『ACM C++』 Codeforces | 1066A - Points in Segments

    大一生活真 特么 ”丰富多彩“ ,多彩到我要忙到哭泣,身为班长,很多班级的事情需要管理,也是,什么东西都得体验学一学,从学生会主席.团委团总支.社团社长都体验过一番了,现在差个班长也没试过,就来体验了 ...

随机推荐

  1. PHP中与类有关的运算符

    与类有关的运算符: new, instanceof:判断一个“变量”(对象,数据),是否是某个类的“实例”: 示意如下: class  A {} class  B {} class  C extend ...

  2. JVM初识、调优

    JVM是按照运行时数据的存储结构来划分内存结构的,JVM在运行java时,将他们划分成几种不同格式的数据,分别存储在不同的区域,这些数据统一称为运行时数据,运行时数据包括java程序本身的数据信息和J ...

  3. addEventListener和attachEvent区别

    addEventListener()是标准的绑定事件监听函数的方法,是W3C所支持的,Chrome.FireFox.Opera.Safari.IE9.0及其以上版本都支持该函数:但是,IE8.0及其以 ...

  4. 【明哥报错簿】之【HTTP Status 500 - Servlet.init() for servlet mvc-dispatcher threw exception】

    报错:java.lang.NoClassDefFoundError: /factory/config/EmbeddedValueResolver spring或者jdk的问题,解决办法:spring3 ...

  5. 【Visual Installer】如何注册自已的文件类型

    一.前言 这几天在做公司软件产品的安装包,产品有一个特定的后缀名为:.isbimqs,需要的功能是双击该后缀名文件后,会有一个启动程序launchRevit.exe去打开Revit,由Revit去打开 ...

  6. Sqli-labs之sql注入基础知识

    (1)注入的分类 基于从服务器接收到的响应  ▲基于错误的SQL注入 ▲联合查询的类型 ▲堆查询注射 ▲SQL盲注 •基于布尔SQL盲注 •基于时间的SQL盲注 •基于报错的SQL盲注 基于如何处理输 ...

  7. C++——内存对象 禁止产生堆对象 禁止产生栈对象

    用C或C++写程序,需要更多地关注内存,这不仅仅是因为内存的分配是否合理直接影响着程序的效率和性能,更为主要的是,当我们操作内存的时候一不小心就会出现问题,而且很多时候,这些问题都是不易发觉的,比如内 ...

  8. Hbase(三) hbase协处理器与二级索引

    一.协处理器—Coprocessor 1. 起源Hbase 作为列族数据库最经常被人诟病的特性包括:无法轻易建立“二级索引”,难以执 行求和.计数.排序等操作.比如,在旧版本的(<0.92)Hb ...

  9. 解题:由乃OI 2018 五彩斑斓的世界

    题面 写在前面的扯淡: 分块的总体学习告一段落,这算是分块集中学习的最后一题么:以后当然也可能会写,就是零零散散的题了=.= 在洛谷上搜ynoi发现好像只有这道题和 由乃OI 2018 未来日记 是分 ...

  10. 【数学】【P5077】 Tweetuzki 爱等差数列

    Description Tweetuzki 特别喜欢等差数列.尤其是公差为 \(1\) 且全为正整数的等差数列. 显然,对于每一个数 \(s\),都能找到一个对应的公差为 \(1\) 且全为正整数的等 ...