损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项和正则项,通常可以表示成如下式子:

θ∗=argminθ1N∑i=1NL(yi,f(xi;θ))+λ Φ(θ)θ∗=arg⁡minθ1N∑i=1NL(yi,f(xi;θ))+λ Φ(θ)

其中,前面的均值函数表示的是经验风险函数,L代表的是损失函数,后面的ΦΦ是正则化项(regularizer)或者叫惩罚项(penalty term),它可以是L1,也可以是L2,或者其他的正则函数。整个式子表示的意思是找到使目标函数最小时的θθ值。下面主要列出几种常见的损失函数。

一、log对数损失函数(逻辑回归)

有些人可能觉得逻辑回归的损失函数就是平方损失,其实并不是。平方损失函数可以通过线性回归在假设样本是高斯分布的条件下推导得到,而逻辑回归得到的并不是平方损失。在逻辑回归的推导中,它假设样本服从伯努利分布(0-1分布),然后求得满足该分布的似然函数,接着取对数求极值等等。而逻辑回归并没有求似然函数的极值,而是把极大化当做是一种思想,进而推导出它的经验风险函数为:最小化负的似然函数(即max F(y, f(x)) —-> min -F(y, f(x)))。从损失函数的视角来看,它就成了log损失函数了。

log损失函数的标准形式

L(Y,P(Y|X))=−logP(Y|X)L(Y,P(Y|X))=−log⁡P(Y|X)

刚刚说到,取对数是为了方便计算极大似然估计,因为在MLE中,直接求导比较困难,所以通常都是先取对数再求导找极值点。损失函数L(Y, P(Y|X))表达的是样本X在分类Y的情况下,使概率P(Y|X)达到最大值(换言之,就是利用已知的样本分布,找到最有可能(即最大概率)导致这种分布的参数值;或者说什么样的参数才能使我们观测到目前这组数据的概率最大)。因为log函数是单调递增的,所以logP(Y|X)也会达到最大值,因此在前面加上负号之后,最大化P(Y|X)就等价于最小化L了。

逻辑回归的P(Y=y|x)表达式如下(为了将类别标签y统一为1和0,下面将表达式分开表示):

将它带入到上式,通过推导可以得到logistic的损失函数表达式,如下:

逻辑回归最后得到的目标式子如下:

J(θ)=−1m∑i=1m[y(i)loghθ(x(i))+(1−y(i))log(1−hθ(x(i)))]J(θ)=−1m∑i=1m[y(i)log⁡hθ(x(i))+(1−y(i))log⁡(1−hθ(x(i)))]

上面是针对二分类而言的。这里需要解释一下:之所以有人认为逻辑回归是平方损失,是因为在使用梯度下降来求最优解的时候,它的迭代式子与平方损失求导后的式子非常相似,从而给人一种直观上的错觉

这里有个PDF可以参考一下:Lecture 6: logistic regression.pdf.

二、平方损失函数(最小二乘法, Ordinary Least Squares )

最小二乘法是线性回归的一种,OLS将问题转化成了一个凸优化问题。在线性回归中,它假设样本和噪声都服从高斯分布(为什么假设成高斯分布呢?其实这里隐藏了一个小知识点,就是中心极限定理,可以参考【central limit theorem】),最后通过极大似然估计(MLE)可以推导出最小二乘式子。最小二乘的基本原则是:最优拟合直线应该是使各点到回归直线的距离和最小的直线,即平方和最小。换言之,OLS是基于距离的,而这个距离就是我们用的最多的欧几里得距离。为什么它会选择使用欧式距离作为误差度量呢(即Mean squared error, MSE),主要有以下几个原因:

  • 简单,计算方便;
  • 欧氏距离是一种很好的相似性度量标准;
  • 在不同的表示域变换后特征性质不变。

平方损失(Square loss)的标准形式如下:

L(Y,f(X))=(Y−f(X))2L(Y,f(X))=(Y−f(X))2

当样本个数为n时,此时的损失函数变为:

Y-f(X)表示的是残差,整个式子表示的是残差的平方和,而我们的目的就是最小化这个目标函数值(注:该式子未加入正则项),也就是最小化残差的平方和(residual sum of squares,RSS)。

而在实际应用中,通常会使用均方差(MSE)作为一项衡量指标,公式如下:

MSE=1n∑i=1n(Yi~−Yi)2MSE=1n∑i=1n(Yi~−Yi)2

上面提到了线性回归,这里额外补充一句,我们通常说的线性有两种情况,一种是因变量y是自变量x的线性函数,一种是因变量y是参数αα的线性函数。在机器学习中,通常指的都是后一种情况。

三、指数损失函数(Adaboost)

学过Adaboost算法的人都知道,它是前向分步加法算法的特例,是一个加和模型,损失函数就是指数函数。在Adaboost中,经过m此迭代之后,可以得到fm(x)fm(x):

Adaboost每次迭代时的目的是为了找到最小化下列式子时的参数αα 和G:

而指数损失函数(exp-loss)的标准形式如下

可以看出,Adaboost的目标式子就是指数损失,在给定n个样本的情况下,Adaboost的损失函数为:

关于Adaboost的推导,可以参考Wikipedia:AdaBoost或者《统计学习方法》P145.

四、Hinge损失函数(SVM)

在机器学习算法中,hinge损失函数和SVM是息息相关的。在线性支持向量机中,最优化问题可以等价于下列式子:

下面来对式子做个变形,令:

于是,原式就变成了:

如若取λ=12Cλ=12C,式子就可以表示成:

可以看出,该式子与下式非常相似:

前半部分中的ll就是hinge损失函数,而后面相当于L2正则项。

Hinge 损失函数的标准形式

L(y)=max(0,1−yy~),y=±1L(y)=max(0,1−yy~),y=±1

可以看出,当|y|>=1时,L(y)=0。

更多内容,参考Hinge-loss

补充一下:在libsvm中一共有4中核函数可以选择,对应的是-t参数分别是:

  • 0-线性核;
  • 1-多项式核;
  • 2-RBF核;
  • 3-sigmoid核。

五、其它损失函数

除了以上这几种损失函数,常用的还有:

0-1损失函数

绝对值损失函数

下面来看看几种损失函数的可视化图像,对着图看看横坐标,看看纵坐标,再看看每条线都表示什么损失函数,多看几次好好消化消化。

OK,暂时先写到这里,休息下。最后,需要记住的是:参数越多,模型越复杂,而越复杂的模型越容易过拟合。过拟合就是说模型在训练数据上的效果远远好于在测试集上的性能。此时可以考虑正则化,通过设置正则项前面的hyper parameter,来权衡损失函数和正则项,减小参数规模,达到模型简化的目的,从而使模型具有更好的泛化能力。

参考文献

Deep Learning基础--各个损失函数的总结与比较的更多相关文章

  1. Deep Learning基础--理解LSTM/RNN中的Attention机制

    导读 目前采用编码器-解码器 (Encode-Decode) 结构的模型非常热门,是因为它在许多领域较其他的传统模型方法都取得了更好的结果.这种结构的模型通常将输入序列编码成一个固定长度的向量表示,对 ...

  2. Deep Learning基础--CNN的反向求导及练习

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  3. Deep Learning基础--参数优化方法

    1. 深度学习流程简介 1)一次性设置(One time setup)          -激活函数(Activation functions) - 数据预处理(Data Preprocessing) ...

  4. Deep Learning基础--26种神经网络激活函数可视化

    在神经网络中,激活函数决定来自给定输入集的节点的输出,其中非线性激活函数允许网络复制复杂的非线性行为.正如绝大多数神经网络借助某种形式的梯度下降进行优化,激活函数需要是可微分(或者至少是几乎完全可微分 ...

  5. Deep Learning基础--Softmax求导过程

    一.softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个 ...

  6. Deep Learning基础--随时间反向传播 (BackPropagation Through Time,BPTT)推导

    1. 随时间反向传播BPTT(BackPropagation Through Time, BPTT) RNN(循环神经网络)是一种具有长时记忆能力的神经网络模型,被广泛用于序列标注问题.一个典型的RN ...

  7. Deep Learning基础--理解LSTM网络

    循环神经网络(RNN) 人们的每次思考并不都是从零开始的.比如说你在阅读这篇文章时,你基于对前面的文字的理解来理解你目前阅读到的文字,而不是每读到一个文字时,都抛弃掉前面的思考,从头开始.你的记忆是有 ...

  8. Deep Learning基础--word2vec 中的数学原理详解

    word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了很多人的关注.由于 word2vec 的作者 Tomas Miko ...

  9. Deep Learning基础--机器翻译BLEU与Perplexity详解

    前言 近年来,在自然语言研究领域中,评测问题越来越受到广泛的重视,可以说,评测是整个自然语言领域最核心和关键的部分.而机器翻译评价对于机器翻译的研究和发展具有重要意义:机器翻译系统的开发者可以通过评测 ...

随机推荐

  1. 洛谷P3656 展翅翱翔之时 (はばたきのとき)(洛谷2017.3月赛round1 t4)

    题目背景 船が往くよミライへ旅立とう 船只启航 朝未来展开旅途 青い空笑ってる(なにがしたい?) 湛蓝天空露出微笑(想做些什么?) ヒカリになろうミライを照らしたい 化作光芒吧 想就此照亮未来 輝きは ...

  2. 【uoj#310】[UNR #2]黎明前的巧克力 FWT

    题目描述 给出 $n$ 个数,从中选出两个互不相交的集合,使得第一个集合与第二个集合内的数的异或和相等.求总方案数. 输入 第一行一个正整数 $n$ ,表示巧克力的个数.第二行 $n$ 个整数 $a_ ...

  3. 迁移数据到历史表SQL(转)

    有时工作需要需要把当前表的数据,移到历史表中,而历史表基本是以时间(年)为后缀来命名历史表的,如 A_2011,A_2012,在移数据时,要按数据的时间,移到不同的表中,且由于如果数据有同步.一次处理 ...

  4. UVA - 11997(巧妙的优先队列)

    题意: 有k个整数数组,各包含k个元素,在每个数组中取一个元素加起来,可以得到kk个和,求这些和中最小的k个值 解析: 从简单的情况开始分析:经典方法,对原题没有思路,那么分析问题的简化版 这是对于两 ...

  5. 我是一个CPU:这个世界慢!死!了!

    最近小编看到一篇十分有意思的文章,多方位.无死角的讲解了CPU关于处理速度的理解,看完之后真是豁然开朗.IOT时代,随着科技的发展CPU芯片的处理能力越来越强,强大的程度已经超乎了我们的想象.今天就把 ...

  6. Linux基础------文件打包解包---tar命令,文件压缩解压---命令gzip,vim编辑器创建和编辑正文件,磁盘分区/格式化,软/硬链接

    作业一:1) 将用户信息数据库文件和组信息数据库文件纵向合并为一个文件/1.txt(覆盖) cat /etc/passwd /etc/group > /1.txt2) 将用户信息数据库文件和用户 ...

  7. Codeforces Round #338 (Div. 2) D 数学

    D. Multipliers time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  8. stout代码分析之一:Duration类

    Duration类用于表示时间长度,可精确到纳秒. 代码实现在duration.hpp中,测试代码:duration_tests.cpp 相关api如下: parse, 将字符串转化成Duration ...

  9. HDU 6194 后缀数组

    string string string Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  10. Nginx -- proxy_pass配置

    一.proxy_pass 作用域: location 不影响浏览器地址栏的url 设置被代理server的协议和地址 协议可以为http或https 地址可以为域名或IP 二.配置规则 2.1 测试环 ...