给定n个数,q个询问[l,r]区间,每次询问该区间的全排列多少种。

数值都是30000规模

首先考虑计算全排列,由于有同种元素存在,相当于每次在len=r-l+1长度的空格随意放入某种元素即$\binom{len}{k_1}$,那么下种元素即为$\binom{len-k_1}{k2}$,以此类推,直至最后直接填满,那么全排列为${\frac{len!}{k_1!k_2!…k_n!}}$

然后可以发现可以直接O(1)求得左右相邻区间的值(就是乘或除),那么考虑分块莫队。

/** @Date    : 2017-09-23 18:57:10
* @FileName: HDU 5145 分块 莫队.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8;
const LL mod = 1e9 + 7; int k[30010];
int a[30010];
int blc[30010];
LL fac[30010];
LL inv[30010];
LL res[30010];
struct yuu
{
LL l, r;
int m;
}b[30010]; int cmp(yuu a, yuu b)
{
if(blc[a.l] != blc[b.l])
return a.l < b.l;
return a.r < b.r;
} void init()
{
fac[0] = fac[1] = 1;
inv[0] = inv[1] = 1;
for(LL i = 2; i <= 30005; i++)
{
fac[i] = (fac[i - 1] * i % mod + mod) % mod;
inv[i] = (mod - mod / i) * inv[mod % i] % mod;
}
}
int main()
{
init();
int T;
cin >> T;
while(T--)
{
LL n, q;
scanf("%lld%lld", &n, &q);
int sqr = sqrt(1.0 * n);
for(int i = 1; i <= n; i++)
scanf("%d", a + i), blc[i] = (i - 1) / sqr + 1;
for(int i = 1; i <= q; i++)
{
scanf("%lld%lld", &b[i].l, &b[i].r);
b[i].m = i;
}
sort(b + 1, b + 1 + q, cmp);
MMF(k);
LL l = 1, r = 0;
LL ans = 1, cnt = 0;
for(int i = 1; i <= q; i++)
{
while(r < b[i].r)
{
r++;
k[a[r]]++;
cnt++;
ans = (ans * cnt % mod * inv[k[a[r]]] % mod + mod) % mod;
}
while(l > b[i].l)
{
l--;
cnt++;
k[a[l]]++;
ans = (ans * cnt % mod * inv[k[a[l]]] % mod + mod) % mod;
}
while(r > b[i].r)
{
ans = (ans * inv[cnt] % mod * k[a[r]] % mod + mod) % mod;
cnt--;
k[a[r]]--;
r--;
}
while(l < b[i].l)
{
ans = (ans * inv[cnt] % mod * k[a[l]] % mod + mod) % mod;
cnt--;
k[a[l]]--;
l++;
}
while(ans < 0)
ans += mod;
res[b[i].m] = ans;
}
for(int i = 1; i <= q; i++)
printf("%lld\n", res[i]);
}
return 0;
}

HDU 5145 分块 莫队的更多相关文章

  1. 【BZOJ-3809】Gty的二逼妹子序列 分块 + 莫队算法

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1072  Solved: 292[Submit][Status][Di ...

  2. 2018.11.07 NOIP训练 L的鞋子(权值分块+莫队)

    传送门 乱搞题. 我直接对权值分块+莫队水过了. 不过调了30min30min30min发现ststst表挂了是真的不想说什么233. 代码

  3. bzoj 3585 mex - 线段树 - 分块 - 莫队算法

    Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问 ...

  4. 【BZOJ2038】【2009国家集训队】小Z的袜子(hose) 分块+莫队

    Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜 ...

  5. BZOJ.3809.Gty的二逼妹子序列(分块 莫队)

    题目链接 /* 25832 kb 26964 ms 莫队+树状数组:增加/删除/查询 都是O(logn)的,总时间复杂度O(m*sqrt(n)*logn),卡不过 莫队+分块:这样查询虽然变成了sqr ...

  6. 分块+莫队||BZOJ3339||BZOJ3585||Luogu4137||Rmq Problem / mex

    题面:P4137 Rmq Problem / mex 题解:先莫队排序一波,然后对权值进行分块,找出第一个没有填满的块,直接for一遍找答案. 除了bzoj3339以外,另外两道题Ai范围都是1e9. ...

  7. 【BZOJ 2120】数颜色【分块/莫队】

    题意 给出n个数字和m个操作.操作有两种.1:查询区间[l,r]内不同种类得数字个数.2: 将下标为p得数字修改为v 分析 如果不是修改操作的话,用莫队贼简单就可以水过,但是因为带了修改就有一些麻烦了 ...

  8. P4396 [AHOI2013]作业 分块+莫队

    这个题正解是莫队+树状数组,但是我个人非常不喜欢树状数组这种东西,所以决定用分块来水这个题.直接在莫队维护信息的时候,维护单点同时维护块内信息就行了. 莫队就是这几行核心代码: void add(in ...

  9. BZOJ 3585: mex(分块+莫队)

    传送门 解题思路 首先直接莫队是能被卡的,时间复杂度不对.就考虑按照值域先进行分块再进行莫队,然后统计答案的时候就暴力扫所有的块,直到一个块内元素不满,再暴力扫这个块就行了,时间复杂度O(msqrt( ...

随机推荐

  1. RIGHT-BICEP单元测试——“二柱子四则运算升级版”

    RIGHT-BICEP单元测试 ——“二柱子四则运算升级版” ”单元测试“这对于我们来说是一个全新的专业含义,在上了软件工程这门课,并当堂编写了简单的"求一组数中的最大值"函数的单 ...

  2. tensorboard入门

    Tensorboard tensorboard用以图形化展示我们的代码结构和图形化训练误差等,辅助优化程序 tensorboard实际上是tensorflow机器学习框架下的一个工具,需要先安装ten ...

  3. Improving the Safety, Scalability, and Efficiency of Network Function State Transfers

    Improving the Safety, Scalability, and Efficiency of Network Function State Transfers 来源:ACM SIGCOMM ...

  4. IDEA + SSH OA 第一天(项目收获:Hibernate XML)

    之前都是用工具逆向生成代码,很少写配置文件,今天试着使用,有几点需要注意 Cascade(级联): Cascade代表是否执行级联操作,Inverse代表是否由己方维护关系. Cascade属性的可能 ...

  5. 软工网络15团队作业4-DAY7

    每日例会 昨天的工作. 张陈东芳:sql连接的基本完成,尝试被其他类调用,未导入全部商品信息: 吴敏烽:基本完成商品信息的调用: 周汉麟:设定商品的调用规则: 林振斌:设计缓存区代码,用于存取最近浏览 ...

  6. Java设计模式 - 单例模式 (懒汉方式和饿汉方式)

    概念: Java中单例模式是一种常见的设计模式,单例模式的意思就是只有一个实例.单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例.这个类称为单例类. 单例模式的写法有好几种,这 ...

  7. delphi self 的使用

    delphi之self 在使用delphi的对象技术的时候,经常会看到一个词汇:self,它到底指的是什么呢? 我们还要从对象与类的关系谈起. 类是对将要创建的对象的性质的描述,是一种文档.这很重要: ...

  8. Kafka发布订阅消息

    Maven <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-cli ...

  9. Django之CSS,JS静态文件的配置

    一. 专门创建一个目录放静态文件,即CSS,JS等. 1)先把jquery.min拿过来. 2)新建一个CSS文件放入样式 3)在login.html中引入.css文件 在login.html中引入. ...

  10. ans_rproxy 说明

    ans_rproxy 说明 网络IP资源分配 Windows2008R2:        IP: 172.16.204.50/24        Gateway: 172.16.204.1      ...