HDU5667—Sequence(对数转化)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5667
题目意思:f1=1,i=1
f2=2 ,i=2
fi=a^b*f[i-1]^c*f[i-2] i>2
思路:发现a^b,和f[i-1]^c之类的东西,我们很明显吧这个幂变成乘,很自然的想到对数。问题是对什么取对数,最后发现对a取对数是合适的。
loga(fi)=loga(a^b*f[i-1]^c*f[i-2])=loga(a^b)+loga(f[i-1]^c)+loga(f[i-2]),我们设k[i]=loga(fi),所以k[i]=b+c*k[i-1]+k[i-2]。我们可以通过矩阵快速幂算出k[n],然后a^k[n]=f[n],可以直接用快速幂算出。
这里注意一下,由于k[n]非常大,所以为了使得a^k[n]%p==(a^(k[n]%y))%p,根据费马小定理如何gcd(a,p)=1,那么 a^(p-1)≡1(mod p),所以a^(p-1)%p=a^0%p,所以循环节为p-1,所以a^(k[n]%(p-1))%p。
这里还有注意一下如果a%p==0,a^(k[n]%(p-1))%p当k[n]=p-1的时候,a^(k[n]%(p-1))%p=1,但是实际上a^(k[n]%(p-1))%p=0,会造成错误,所以需要特判a%p==0的情况,不过这个题好像后台题目有点水,不必判断也能过貌似,所以代码里面没有体现
代码:
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define LL long long
LL p,aa,bb,cc,n,mod; //mod为p-1
struct matrix
{
LL mat[][];
};
matrix pow1(matrix a,matrix b) // N^3的矩阵相乘
{
matrix c;
memset(c.mat,,sizeof(c.mat));
for(int i=;i<;i++){
for(int j=;j<;j++){
for(int k=;k<;k++){
c.mat[i][j] += (a.mat[i][k]*b.mat[k][j]);
c.mat[i][j] %= mod;
}
}
}
return c;
}
matrix cheng(matrix a,LL y) //矩阵快速幂
{
matrix b;
memset(b.mat,,sizeof(b.mat));
for(int i=;i<;i++) b.mat[i][i] = ;
while(y){
if(y&){
b = pow1(a,b);
y-=;
}else {
a = pow1(a,a);
y/=;
}
}
return b;
}
LL quick_pow(LL a,LL tmp) //对a进行快速幂
{
LL b = 1ll;
while(tmp)
{
if(tmp&) b=(a*b)%p;
a=(a*a)%p;
tmp>>=;
}
return b;
}
int main()
{
int t;
scanf("%d",&t);
while(t--){
scanf("%lld%lld%lld%lld%lld",&n,&aa,&bb,&cc,&p);
matrix ma;
mod = p-;
memset(ma.mat,,sizeof(ma.mat));//初始化递归矩阵
ma.mat[][] = cc; ma.mat[][] = ; ma.mat[][] = bb;
ma.mat[][] = ; ma.mat[][] = ; ma = cheng(ma,n-); //算指数和直接幂有点不同
LL tmp = ma.mat[][]*bb + ma.mat[][]; //取出指数
LL ans = quick_pow(aa,tmp);
printf("%lld\n",ans); }
return ;
}
HDU5667—Sequence(对数转化)的更多相关文章
- hdu-5667 Sequence(矩阵快速幂+费马小定理+快速幂)
题目链接: Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...
- HDU3666-THE MATRIX PROBLEM(差分约束-不等式解得存在性判断 对数转化)
You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...
- scikit-learn 朴素贝叶斯类库使用小结
之前在朴素贝叶斯算法原理小结这篇文章中,对朴素贝叶斯分类算法的原理做了一个总结.这里我们就从实战的角度来看朴素贝叶斯类库.重点讲述scikit-learn 朴素贝叶斯类库的使用要点和参数选择. 1. ...
- 使用RStudio调试(debug)基础学习(二)和fGarch包中的garchFit函数估计GARCH模型的原理和源码
一.garchFit函数的参数--------------------------------------------- algorithm a string parameter that deter ...
- [机器学习] 分类 --- Naive Bayes(朴素贝叶斯)
Naive Bayes-朴素贝叶斯 Bayes' theorem(贝叶斯法则) 在概率论和统计学中,Bayes' theorem(贝叶斯法则)根据事件的先验知识描述事件的概率.贝叶斯法则表达式如下所示 ...
- 51nod 1673 树有几多愁(链表维护树形DP+状压DP)
题意 lyk有一棵树,它想给这棵树重标号. 重标号后,这棵树的所有叶子节点的值为它到根的路径上的编号最小的点的编号. 这棵树的烦恼值为所有叶子节点的值的乘积. lyk想让这棵树的烦恼值最大,你只需输出 ...
- [置顶] 刘汝佳《训练指南》动态规划::Beginner (25题)解题报告汇总
本文出自 http://blog.csdn.net/shuangde800 刘汝佳<算法竞赛入门经典-训练指南>的动态规划部分的习题Beginner 打开 这个专题一共有25题,刷完 ...
- NOIP2016 “西湖边超萌小松鼠” 模拟赛
总的来说,这套题的难度比较接近近些年来Day1的真实难度,认为非常值得一打 GotoAndPlay 题目大意 询问这个图上是否存在一种跳法,能跳到这个图上的每一个点 题目解析 犯了个低级错误,双向边忘 ...
随机推荐
- queue for max elem, pop, push
queue for max elem, pop, push 个人信息:就读于燕大本科软件project专业 眼下大三; 本人博客:google搜索"cqs_2012"就可以; 个人 ...
- CWidgetMgr---cpp
#include "WidgetMgr.h" #include "XWidget.h" #include "Config.h" #inclu ...
- python学习之winreg模块
winreg模块将Windows注册表API暴露给了python. 常见方法和属性 winreg.OpenKey(key,sub_key,reserved = ,access = KEY_READ) ...
- spark源代码
电子书: https://spark-internals.books.yourtion.com/
- Spring整合activiti单元测试
** * Spring测试activiti配置是否正常 * <p>Title: SpringActivitiTest</p> * <p>Description: & ...
- hdu6134 Battlestation Operational 莫比乌斯第一种形式
/** 题目:hdu6134 Battlestation Operational 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6134 题意:f(n) = ...
- 程序生成word与PDF文档的方法(python)
程序导出word文档的方法 将web/html内容导出为world文档,再java中有很多解决方案,比如使用Jacob.Apache POI.Java2Word.iText等各种方式,以及使用free ...
- 辛星和您一起解析PHP中的单例模式
事实上单例模式还是用的挺多的,要说到最经典的样例.可能就是操纵数据库的类了,它假设是单例的话,能够避免大量的new操作消耗资源,而假设系统中须要一个类来管理全局的信息,则把它用成单例也是非常不错的.由 ...
- 怎么取消环境变量设置 shell
Linux字符模式下设置/删除环境变量方法: bash下 设置:export 变量名=变量值 删除:unset 变量名 转自:http://zhidao.baidu.com/link?url=sY3u ...
- Java去除所有非中文字符串
"fdsfjasd阿斯顿飞机阿斯蒂芬,,,,,,,,....".replaceAll("[^\u4E00-\u9FA5]", "");