Elastic Load Balancing with Sticky Sessions — Shlomo Swidler https://shlomoswidler.com/2010/04/elastic-load-balancing-with-sticky-sessions.html

Elastic Load Balancing with Sticky Sessions

by SHLOMO SWIDLER on APRIL 8, 2010

At long last, the most oft-requested feature for EC2’s Elastic Load Balancer is here: session affinity, also known as “sticky sessions”. What is session affinity? Why is this feature in such high demand? How can it be used with existing applications? Let’s take a look at these questions. But first, let’s explore what a session is – then we’ll cover why we want it to be sticky, and what ELB’s sticky session limitations are. [To skip directly to an explanation of how to use ELB sticky sessions, go toward the bottom of the article.]

What is a Session?

A session is a way to get your application involved in a long-lasting conversation with a particular client. Without a session, a conversation between your application and a client would  look like something straight out of the movie Memento. It would look like this:

Life Without Sessions

Client: Hi, I’d like to see /products/awesomeDoohickey.html

Application: I don’t know who you are. Please go here to login first: /login

Client: OK, I’d like to see /login

Application: Here it is: “…”

Client: Thanks. Here’s the filled in login form.

Application: Thanks for logging in. Where do you want to go?

Client: I’d like to see /products/awesomeDoohickey.html

Application: I don’t know who you are. Please go here to login first: /login

Client: >Sigh< OK, I’d like to see /login

Application: Happily! Here it is: “…”

Client: Here’s the filled in login form.

Application: Thanks for logging in. Where do you want to go?

Client: Show me /products/awesomeDoohickey.html already!

Application: I don’t know who you are. Please go here to login first: /login

Client: *$#%& this!

The application can’t remember who the client is – it has no context to process each request as part of a conversation. The client gets so frustrated he starts thinking he’s living in an Adam Sandler movie.

On a technical level: Each HTTP request-response pair between the client and application happens (most often) on a different TCP connection. This is especially true when a load balancer sits between the client and the application. So the application can’t use the TCP connection as a way to remember the conversational context. And, HTTP itself is stateless: any request can be sent at any time, in any sequence, regardless of the preceding requests. Sure, the application may demand a particular pattern of interaction – like logging in before accessing certain resources – but that application-level state is enforced by the application, not by HTTP. So HTTP cannot be relied on to maintain conversational context between the client and the application.

There are two ways to solve this problem of forgetting the context. The first is for the client to remind the application of the context every time he requests something: “My name is Henry Whatsisface, I have these items in my shopping cart (…), I got here via this affiliate (…), yada yada yada… and I’d like to see /products/awesomeDoohickey.html”. No sane client would ever agree to interact with an application that needed to be sent the entire context at every stage of the conversation. Its burdensome for the client, it’s difficult to maintain for the application, and it’s expensive (in bandwidth) for both of them. Besides, the application usually maintains the conversational state, not the client. So it’s wrong to require the client to send the entire conversation context along with each request.

The accepted solution is to have the application remember the context by creating an associated memento. This memento is given to the client and returned to the application on subsequent requests. Upon receiving the memento the application looks for the associated context, and – voila – discovers it. Thus, the conversation is preserved.

One way of providing a memento is by putting it into the URL. It looks really ugly when you do this: http://www.example.com/products/awesomeDoohickey.html?sessionID=0123456789ABCDEFGH

More commonly, mementos are provided via cookies, which all browsers these days support. Cookies are placed within the HTTP request so they can be discovered by the application even if a load balancer intervenes.

Here’s what that conversation looks like with cookies:

Life With Sessions, Take 1

Client: Hi, I’d like to see /products/awesomeDoohickey.html

Application: I don’t know who you are. Please go here to login first: /login

Client: OK, I’d like to see /login

Application: Here it is: “…”

Client: Thanks. Here’s the filled in login form.

Application: Thanks for logging in. Here’s a cookie. Where do you want to go?

Client: I’d like to see /products/awesomeDoohickey.html and here’s my cookie.

ApplicationI know you – I’d recognize that cookie anywhere! Great, here’s that page: “…”

Client: I’d like to buy 5000 units. Here’s my cookie.

Much improved, yes?

A side point: most modern applications will provide a cookie earlier in the conversation. This allows the following more optimal conversation:

Life With Sessions, Take 2

Client: Hi, I’d like to see /products/awesomeDoohickey.html

Application: I don’t know who you are. Here’s a cookie. Take this login page and fill it out: “…”

Client: OK. Here’s the filled in login form. And here’s my cookie.

Application: I know you – I’d recognize that cookie anywhere! Thanks for logging in. I recall you wanted to see /products/awesomeDoohickey.html. Here it is: “…”

Client: I’d like to buy 5000 units. Here’s my cookie.

That’s about as optimized a conversation as you can have. Cookies make it possible.

What is Session Affinity (Sticky Sessions)? Why is it in High Demand?

When you only have one application server talking to your clients life is easy: all the session contexts can be stored in that application server’s memory for fast retrieval. But in the world of highly available and scalable applications there’s likely to be more than one application server fulfilling requests, behind a load balancer. The load balancer routes the first request to an application server, who stores the session context in its own memory and gives the client back a cookie. The next request from the same client will contain the cookie – and, if the same application server gets the request again, the application will rediscover the session context. But what happens if that client’s next request instead gets routed to a different application server? That application server will not have the session context in its memory – even though the request contains the cookie, the application can’t discover the context.

If you’re willing to modify your application you can overcome this problem. You can store the session context in a shared location, visible to all application servers: the database or memcached, for example. All application servers will then be able to lookup the cookie in the central, shared location and discover the context. Until now, this was the approach you needed to take in order to retain the session context behind an Elastic Load Balancer.

But not all applications can be modified in this way. And not all developers want to modify existing applications. Instead of modifying the application, you need the load balancer to route the same client to the same application server. Once the client’s request has been routed to the correct application server, that application server can lookup the session cookie in its own memory and recover the conversational context.

That’s what sticky sessions are: the load balancer routing the same client to the same application server. And that’s why they’re so important: If the load balancer supports sticky sessions then you don’t need to modify your application to remember client session context.

How to Use ELB with Sticky Sessions with Existing Applications

The key to managing ELB sticky sessions is the duration of the stickiness: how long the client should consistently be routed to the same back-end instance. Too short, and the session context will be lost, forcing the client to login again. Too long, and the load balancer will not be able to distribute requests equally across the application servers.

Controlling the ELB Stickiness Duration

ELB supports two ways of managing the stickiness’ duration: either by specifying the duration explicitly, or by indicating that the stickiness expiration should follow the expiration of the application server’s own session cookie.

If your application server has an existing session cookie already, the simplest way to get stickiness is to configure your ELB to use the existing application cookie for determining the stickiness duration. PHP applications usually have a session cookie called PHPSESSID. Java applications usually have a session cookie called JSESSIONID. The expiration of these cookies is controlled by your application, and the stickiness expiration can be set to match as follows. Assuming your load balancer is called myLoadBalancer and it has an HTTP listener on port 80:

elb-create-app-cookie-stickiness-policy myLoadBalancer --cookie-name PHPSESSID --policy-name followPHPPolicy
elb-set-lb-policies-of-listener myLoadBalancer --lb-port 80 --policy-names followPHPPolicy

The above commands create a stickiness policy that says “make the session stickiness last as long as the cookie PHPSESSID does” and sets the load balancer to use that stickiness policy. Behind the scenes, the ELB’s session cookie will have the same lifetime as the PHPSESSID cookie provided by your application.

If your application does not have its own session cookie already, set your own stickiness duration for the load balancer, as follows:

elb-create-lb-cookie-stickiness-policy myLoadBalancer --policy-name fifteenMinutesPolicy --expiration-period 900
elb-set-lb-policies-of-listener myLoadBalancer --lb-port 80 --policy-names fifteenMinutesPolicy

These commands create a stickiness policy that says “make the session stickiness last for fifteen minutes” and sets the load balancer to use that stickiness policy. Behind the scenes, the ELB’s session cookie will have a lifetime of fifteen minutes.

What Can’t ELB Sticky Session Do?

Life is not all roses with ELB’s sticky session support. Here are some things it can’t do.

Update October 2010: ELB now supports SSL termination, and it can provide sticky sessions over HTTPS as well.

HTTPS

Remember how sticky sessions are typically provided via cookies? The cookie is inserted into the HTTP request by the client’s browser, and any server or load balancer that can read the request can recover the cookie. This works great for plain old HTTP-based communications.

With HTTPS connections the entire communications stream is encrypted. Only servers that have the proper decryption credentials can decipher the stream and discover the cookies. If the load balancer has the server’s SSL certificate then it can decrypt the stream. Because it does not have your application’s SSL certificate (and there’s no way to give it your certificate) ELB does not support HTTPS communications. If you need to support sticky sessions and HTTPS in EC2 then you can’t use ELB today. You need to use HAProxy or aiCache or another product that provide load balancing with session affinity and SSL termination.

Scaling-down-proof stickiness

What happens when you add or remove an application server to/from the load balancer? Depending on the stickiness implementation the load balancer may or may not be able to route requests to the same application servers as it did before the scaling event (caused, for example, by an AutoScaling trigger).

When scaling up (adding more application servers) ELB maintains stickiness of existing sessions. Only new connections will be forwarded to the newly-added application servers.

When scaling down (removing application servers), you should expect some of your clients to lose their sessions and require logins again. This is because some of the stored sessions were on the application server that is no longer servicing requests.

If you really want your sessions to persist even through scaling-down events, you need to go back to basics: your application will need to store the sessions independently, as it did before sticky sessions were supported. In this case, sticky session support can provide an added optimization, allowing you to cache the session locally on each application server and only retrieve it from the central session store (the DB?) if it’s not in the local cache. Such cache misses would happen when application servers are removed from the load balancing pool, but otherwise would not impact performance. Note that this technique can be used equally well with ELB and with other load balancers.

With the introduction of sticky sessions for ELB, you – the application developer – can avoid modifying your application in order to retain session context behind a load balancer. The technical term for this is “a good thing”. Sticky sessions are, despite their limitations, a very welcome addition to ELB’s features.

Thanks to Jeff Barr of Amazon Web Services for providing feedback on drafts of this article.

Elastic Load Balancing with Sticky Sessions的更多相关文章

  1. NGINX Load Balancing - HTTP Load Balancer

    This chapter describes how to use NGINX and NGINX Plus as a load balancer. Overview Load balancing a ...

  2. Load Balancing with NGINX 负载均衡算法

    Using nginx as HTTP load balancer Using nginx as HTTP load balancer http://nginx.org/en/docs/http/lo ...

  3. 【架构】How To Use HAProxy to Set Up MySQL Load Balancing

    How To Use HAProxy to Set Up MySQL Load Balancing Dec  2, 2013 MySQL, Scaling, Server Optimization U ...

  4. How Network Load Balancing Technology Works--reference

    http://technet.microsoft.com/en-us/library/cc756878(v=ws.10).aspx In this section Network Load Balan ...

  5. Network Load Balancing Technical Overview--reference

    http://technet.microsoft.com/en-us/library/bb742455.aspx Abstract Network Load Balancing, a clusteri ...

  6. 负载均衡(Load Balancing)学习笔记(一)

    概述 在分布式系统中,负载均衡(Load Balancing)是一种将任务分派到多个服务端进程的方法.例如,将一个HTTP请求派发到实际的Web服务器中执行的过程就涉及负载均衡的实现.一个HTTP请求 ...

  7. How Load Balancing Policies Work

    How Load Balancing Policies Work https://docs.cloud.oracle.com/en-us/iaas/Content/Balance/Reference/ ...

  8. CF# Educational Codeforces Round 3 C. Load Balancing

    C. Load Balancing time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  9. Codeforces Educational Codeforces Round 3 C. Load Balancing 贪心

    C. Load Balancing 题目连接: http://www.codeforces.com/contest/609/problem/C Description In the school co ...

随机推荐

  1. MFS排错

    [root@Nginx_Master mfs]# /app/server/mfs/sbin/mfsmaster start working directory: /app/server/mfs/var ...

  2. prompt() 方法

    定义和用法 prompt() 方法用于显示可提示用户进行输入的对话框. 语法 prompt(text,defaultText) 参数 描述 text 可选.要在对话框中显示的纯文本(而不是 HTML ...

  3. 0061 Spring MVC的数据格式化--Formatter--FormatterRegistrar--@DateTimeFormat--@NumberFormat

    Converter只完成了数据类型的转换,却不负责输入输出数据的格式化工作,日期时间.货币等虽都以字符串形式存在,却有不同的格式. Spring格式化框架要解决的问题是:从格式化的数据中获取真正的数据 ...

  4. xeno 实时性能测试 在100us的采样周期的测试数据

    1 xeno 用户层测试时间: root@sama5d3-linux:/usr/bin latency -t0 -T25 -p100== Sampling period: 100 us== Test ...

  5. 使用jsonp处理跨域问题

    调用web接口,get请求,发现提示:No 'Access-Control-Allow-Origin' header is present on the requested resource. 这个和 ...

  6. sudo非交互式输入密码

    sudo非交互式输入密码 编辑 删除 我们在使用sudo命令的时候,为了避免交互,可以使用 echo 'password' |sudo -S cmd 这样的方式,通过管道传入密码,就不用手动输入了. ...

  7. openresty 视频

    http://v.163.com/paike/V8H1BIE6U/V949ER8RD.html#from=search

  8. EasyUI 创建Tree

    tree可以被从标记创建.easyui tree应该定义在ul元素中.无序列表ul元素提供了基本tree结构.每一个li元素被产生一个tree节点,子ul元素产生父tree节点.例子:     < ...

  9. JavaScript处理JSON

    一.什么是JSON? JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.易于人阅读和编写.同时也易于机器解析和生成.它基于JavaScript(Standa ...

  10. php -- PDO预处理

    可以使用多种方式实现预处理:指的是在绑定数据进行执行的时候,可以有多种方式. 预处理语句中为变量 使用数组指定预处理变量 1.准备预处理语句(发送给服务器,让服务器准备预处理语句) PDOStatem ...