Budget


Time Limit: 5 Seconds      Memory Limit: 32768 KB      Special Judge

We are supposed to make a budget proposal for this multi-site competition. The budget proposal is a matrix where the rows represent different kinds of expenses and the columns represent different sites. We had a meeting about this, some time ago where we discussed the sums over different kinds of expenses and sums over different sites. There was also some talk about special constraints: someone mentioned that Computer Center would need at least 2000K Rials for food and someone from Sharif Authorities argued they wouldn't use more than 30000K Rials for T-shirts. Anyway, we are sure there was more; we will go and try to find some notes from that meeting.

And, by the way, no one really reads budget proposals anyway, so we'll just have to make sure that it sums up properly and meets all constraints.

Input

The first line of the input contains an integer N, giving the number of test cases. The next line is empty, then, test cases follow: The first line of each test case contains two integers, m and n, giving the number of rows and columns (m <= 200, n <= 20). The second line contains m integers, giving the row sums of the matrix. The third line contains n integers, giving the column sums of the matrix. The fourth line contains an integer c giving the number of constraints. The next c lines contain the constraints. There is an empty line after each test case.

Each constraint consists of two integers r and q, specifying some entry (or entries) in the matrix (the upper left corner is 1 1 and 0 is interpreted as "ALL", i.e. 4 0 means all entries on the fourth row and 0 0 means the entire matrix), one element from the set {<, =, >} and one integer v, with the obvious interpretation. For instance, the constraint 1 2 > 5 means that the cell in the 1st row and 2nd column must have an entry strictly greater than 5, and the constraint 4 0 = 3 means that all elements in the fourth row should be equal to 3.

Output

For each case output a matrix of non-negative integers meeting the above constraints or the string "IMPOSSIBLE" if no legal solution exists. Put one empty line between matrices.

Sample Input

2

2 3 
8 10 
5 6 7 

0 2 > 2 
2 1 = 3 
2 3 > 2 
2 3 < 5

2 2 
4 5 
6 7 

1 1 > 10

Sample Output

2 3 3 
3 3 4

IMPOSSIBLE


Source: Asia 2003, Tehran (Iran), Preliminary

【分析】:

首先建图不难

每一行的和为x,S到每行连[x,x]的边

每一列的和为y,每列到T连[y,y]的边

对于一个点i,j,i行向j列连[l,r]的边

然后正常的有源上下界网络流

还要处理输入自身的矛盾

注意初始化,并且l和r初始为+-1000即可,否则可能爆long long

注意输入是>和<,不能理解为>=和<=

注意数组大小

注意测试数据有负数

注意读完数据,不能读入过程中发现矛盾就退出了,有人说似乎读入每组数据最后要读入一个空行

=========================================

QAQ搞了一下午

还有谁跑的比我快?

data下载:(回归社会)

Select Code
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int Z=300,N=1e4+5,M=1e5+5;
const int inf=2e9;
struct edge{int v,next,cap;}e[M];int tot=1,head[N];
int n,m,k,cas,sum,S,T,SS,TT,in[N],dis[N],dn[Z][Z],up[Z][Z],q[M];bool flag;
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void add(int x,int y,int z){
e[++tot].v=y;e[tot].cap=z;e[tot].next=head[x];head[x]=tot;
e[++tot].v=x;e[tot].cap=0;e[tot].next=head[y];head[y]=tot;
}
bool bfs(int S,int T){
memset(dis,-1,sizeof dis);
int h=0,t=1;q[t]=S;dis[S]=0;
while(h!=t){
int x=q[++h];
for(int i=head[x];i;i=e[i].next){
if(e[i].cap&&dis[e[i].v]==-1){
dis[e[i].v]=dis[x]+1;
if(e[i].v==T) return 1;
q[++t]=e[i].v;
}
}
}
return 0;
}
int dfs(int x,int T,int f){
if(x==T) return f;
int used=0,t;
for(int i=head[x];i;i=e[i].next){
if(e[i].cap&&dis[e[i].v]==dis[x]+1){
t=dfs(e[i].v,T,min(e[i].cap,f));
e[i].cap-=t;e[i^1].cap+=t;
used+=t;f-=t;
if(!f) return used;
}
}
if(!used) dis[x]=-1;
return used;
}
int dinic(int S,int T){
int res=0;
while(bfs(S,T)) res+=dfs(S,T,2e9);
return res;
}
void jud(int x,int y,int v){
if(v<dn[x][y]||v>up[x][y]) flag=1;
}
void Cl(){
tot=1;
memset(in,0,sizeof in);
memset(head,0,sizeof head);
for(int i=0;i<=n;i++){
for(int j=0;j<=n+m+1;j++){
dn[i][j]=0;
up[i][j]=30000;
}
}
}
void work(){
n=read();m=read();
while(n>200||m>20||n<=0||m<=0);
S=n+m+1;T=S+1;SS=S+2;TT=S+3;Cl();
for(int i=1,x;i<=n;i++) x=read(),add(S,i,0),in[S]-=x,in[i]+=x;
for(int i=1,x;i<=m;i++) x=read(),add(i+n,T,0),in[i+n]-=x,in[T]+=x;
k=read();char s[3];flag=0;
for(int i=1,x,y,z,f;i<=k;i++){
x=read();y=read();scanf("%s",s);z=read();
f=s[0]=='>'?0:s[0]=='<'?1:2;
if(x&&y){
if(!f){
dn[x][y+n]=max(z+1,dn[x][y+n]);
}
else if(f&1){
up[x][y+n]=min(z-1,up[x][y+n]);
}
else{
jud(x,y+n,z);
dn[x][y+n]=up[x][y+n]=z;
}
}
if(!x&&y){
if(!f){
for(int j=1;j<=n;j++){
dn[j][y+n]=max(z+1,dn[j][y+m]);
}
}
else if(f&1){
for(int j=1;j<=n;j++){
up[j][y+n]=min(z-1,up[j][y+m]);
}
}
else{
for(int j=1;j<=n;j++){
jud(j,y+n,z);
dn[j][y+n]=up[j][y+n]=z;
}
}
}
if(x&&!y){
if(!f){
for(int j=1;j<=m;j++){
dn[x][j+n]=max(z+1,dn[j][y+m]);
}
}
else if(f&1){
for(int j=1;j<=m;j++){
up[x][j+n]=min(z-1,up[j][y+m]);
}
}
else{
for(int j=1;j<=m;j++){
jud(x,j+n,z);
dn[x][j+n]=up[x][j+n]=z;
}
}
}
if(!x&&!y){
if(!f){
for(int j=1;j<=n;j++){
for(int k=1;k<=m;k++){
dn[j][k+n]=max(z+1,dn[j][k+n]);
}
}
}
else if(f&1){
for(int j=1;j<=n;j++){
for(int k=1;k<=m;k++){
up[j][k+n]=min(z-1,up[j][k+n]);
}
}
}
else{
for(int j=1;j<=n;j++){
for(int k=1;k<=m;k++){
jud(j,k+n,z);
dn[j][k+n]=up[j][k+n]=z;
}
}
}
}
}
for(int i=1;i<=n&&!flag;i++){
for(int j=1;j<=m;j++){
if(up[i][j+n]<dn[i][j+n]){flag=1;break;}
add(i,j+n,up[i][j+n]-dn[i][j+n]);
in[i]-=dn[i][j+n];
in[j+n]+=dn[i][j+n];
}
}
if(flag){puts("IMPOSSIBLE");return ;}
add(T,S,inf);sum=0;
for(int i=1;i<=T;i++){
if(in[i]>0) add(SS,i,in[i]),sum+=in[i];
if(in[i]<0) add(i,TT,-in[i]);
}
if(dinic(SS,TT)!=sum){puts("IMPOSSIBLE");return ;}
int now=S;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
printf("%d",dn[i][j+n]+e[now<<1^1].cap);
if(j!=m) putchar(' ');
now++;
}
putchar('\n');
}
}
int main(){
cas=read();
for(;cas--;cas?putchar('\n'):1) work();
return 0;
}

poj2396 Budget&&ZOJ1994 Budget[有源汇上下界可行流]的更多相关文章

  1. POJ2396 Budget [有源汇上下界可行流]

    POJ2396 Budget 题意:n*m的非负整数矩阵,给出每行每列的和,以及一些约束关系x,y,>=<,val,表示格子(x,y)的值与val的关系,0代表整行/列都有这个关系,求判断 ...

  2. 有源汇上下界可行流(POJ2396)

    题意:给出一个n*m的矩阵的每行和及每列和,还有一些格子的限制,求一组合法方案. 源点向行,汇点向列,连一条上下界均为和的边. 对于某格的限制,从它所在行向所在列连其上下界的边. 求有源汇上下界可行流 ...

  3. 计蒜客 31447 - Fantastic Graph - [有源汇上下界可行流][2018ICPC沈阳网络预赛F题]

    题目链接:https://nanti.jisuanke.com/t/31447 "Oh, There is a bipartite graph.""Make it Fan ...

  4. poj2396 Budget(有源汇上下界可行流)

    [题目链接] http://poj.org/problem?id=2396 [题意] 知道一个矩阵的行列和,且知道一些格子的限制条件,问一个可行的方案. [思路] 设行为X点,列为Y点,构图:连边(s ...

  5. poj2396有源汇上下界可行流

    题意:给一些约束条件,要求算能否有可行流,ps:刚开始输入的是每一列和,那么就建一条上下界相同的边,这样满流的时候就一定能保证流量相同了,还有0是该列(行)对另一行每个点都要满足约束条件 解法:先按无 ...

  6. 算法复习——有源汇上下界可行流(bzoj2396)

    题目: Description We are supposed to make a budget proposal for this multi-site competition. The budge ...

  7. ZOJ1994有源汇上下界可行流

    http://fastvj.rainng.com/contest/236779#problem/G Description: n 行 m 列 给你行和 与 列和 然后有Q个限制,表示特定单元格元素大小 ...

  8. bzoj 2406 矩阵 —— 有源汇上下界可行流

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2406 这题,首先把题目那个式子的绝对值拆成两个限制,就成了网络流的上下界: 有上下界可行流原 ...

  9. bzoj千题计划158:bzoj2406: 矩阵(有源汇上下界可行流)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2406 设矩阵C=A-B 最小化 C 一行或一列和的最大值 整体考虑一行或者一列的和 二分最大值 这样 ...

随机推荐

  1. POJ 2677 旅行商问题 双调dp或者费用流

    Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3408   Accepted: 1513 Description ...

  2. redis.windows.conf各项配置参数介绍 (九)

    # 默认情况下,redis不是在后台模式运行的,如果需要在后台进程运行,把该项的值更改为yes,默认为no daemonize:是否以后台daemon方式运行 # 如redis服务以后台进程运行的时候 ...

  3. Javascript中的对象和原型(一)(转载)

    面向对象的语言(如Java)中有类的概念,而通过类可以创建任意多个具有相同属性和方法的对象.但是,JavaScript 没有类的概念,因此它的对象也与基于类的语言中的对象有所不同. 要了解面向对象,首 ...

  4. RSA加密的测试demo

    使用.net自带的RSA,需要引用System.Security.Cryptography 测试环境.net4.6 static void Main(string[] args) { var RSA ...

  5. Bootstrap学习笔记(5)--实现Bootstrap导航条可点击和鼠标悬停显示下拉菜单

    实现Bootstrap导航条可点击和鼠标悬停显示下拉菜单 微笑的鱼 2014-01-03 Bootstrap 5,281 次围观 11条评论 使用Bootstrap导航条组件时,如果你的导航条带有下拉 ...

  6. [gpio]Linux GPIO简单使用方式2-sysfs

    转自:http://blog.csdn.net/cjyusha/article/details/50418862 在Linux嵌入式设备开发中,对GPIO的操作是最常用的,在一般的情况下,一般都有对应 ...

  7. KMP算法完整教程 (下)

    下面我们用数学归纳法来解决这个填值的问题. 这里我们借鉴数学归纳法的三个步骤(或者说是动态规划?): 1.初始状态 2.假设第j位以及第j位之前的我们都填完了 3.推论第j+1位该怎么填 初始状态我们 ...

  8. docker 容器内ping不通外网

    其实只要重启docker就好了 systemctl restart docker https://blog.csdn.net/yangzhenping/article/details/43567155

  9. 容斥 + 组合数学 ---Codeforces Round #317 A. Lengthening Sticks

    Lengthening Sticks Problem's Link: http://codeforces.com/contest/571/problem/A Mean: 给出a,b,c,l,要求a+x ...

  10. zend Studio10.6.2 下载

    http://www.th7.cn/Program/php/201409/286788.shtml