poj2396 Budget&&ZOJ1994 Budget[有源汇上下界可行流]
Budget
Time Limit: 5 Seconds Memory Limit: 32768 KB Special Judge
We are supposed to make a budget proposal for this multi-site competition. The budget proposal is a matrix where the rows represent different kinds of expenses and the columns represent different sites. We had a meeting about this, some time ago where we discussed the sums over different kinds of expenses and sums over different sites. There was also some talk about special constraints: someone mentioned that Computer Center would need at least 2000K Rials for food and someone from Sharif Authorities argued they wouldn't use more than 30000K Rials for T-shirts. Anyway, we are sure there was more; we will go and try to find some notes from that meeting.
And, by the way, no one really reads budget proposals anyway, so we'll just have to make sure that it sums up properly and meets all constraints.
Input
The first line of the input contains an integer N, giving the number of test cases. The next line is empty, then, test cases follow: The first line of each test case contains two integers, m and n, giving the number of rows and columns (m <= 200, n <= 20). The second line contains m integers, giving the row sums of the matrix. The third line contains n integers, giving the column sums of the matrix. The fourth line contains an integer c giving the number of constraints. The next c lines contain the constraints. There is an empty line after each test case.
Each constraint consists of two integers r and q, specifying some entry (or entries) in the matrix (the upper left corner is 1 1 and 0 is interpreted as "ALL", i.e. 4 0 means all entries on the fourth row and 0 0 means the entire matrix), one element from the set {<, =, >} and one integer v, with the obvious interpretation. For instance, the constraint 1 2 > 5 means that the cell in the 1st row and 2nd column must have an entry strictly greater than 5, and the constraint 4 0 = 3 means that all elements in the fourth row should be equal to 3.
Output
For each case output a matrix of non-negative integers meeting the above constraints or the string "IMPOSSIBLE" if no legal solution exists. Put one empty line between matrices.
Sample Input
2
2 3
8 10
5 6 7
4
0 2 > 2
2 1 = 3
2 3 > 2
2 3 < 5
2 2
4 5
6 7
1
1 1 > 10
Sample Output
2 3 3
3 3 4
IMPOSSIBLE
Source: Asia 2003, Tehran (Iran), Preliminary
【分析】:
首先建图不难
每一行的和为x,S到每行连[x,x]的边
每一列的和为y,每列到T连[y,y]的边
对于一个点i,j,i行向j列连[l,r]的边
然后正常的有源上下界网络流
还要处理输入自身的矛盾
注意初始化,并且l和r初始为+-1000即可,否则可能爆long long
注意输入是>和<,不能理解为>=和<=
注意数组大小
注意测试数据有负数
注意读完数据,不能读入过程中发现矛盾就退出了,有人说似乎读入每组数据最后要读入一个空行
=========================================
QAQ搞了一下午

还有谁跑的比我快?
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int Z=300,N=1e4+5,M=1e5+5;
const int inf=2e9;
struct edge{int v,next,cap;}e[M];int tot=1,head[N];
int n,m,k,cas,sum,S,T,SS,TT,in[N],dis[N],dn[Z][Z],up[Z][Z],q[M];bool flag;
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void add(int x,int y,int z){
e[++tot].v=y;e[tot].cap=z;e[tot].next=head[x];head[x]=tot;
e[++tot].v=x;e[tot].cap=0;e[tot].next=head[y];head[y]=tot;
}
bool bfs(int S,int T){
memset(dis,-1,sizeof dis);
int h=0,t=1;q[t]=S;dis[S]=0;
while(h!=t){
int x=q[++h];
for(int i=head[x];i;i=e[i].next){
if(e[i].cap&&dis[e[i].v]==-1){
dis[e[i].v]=dis[x]+1;
if(e[i].v==T) return 1;
q[++t]=e[i].v;
}
}
}
return 0;
}
int dfs(int x,int T,int f){
if(x==T) return f;
int used=0,t;
for(int i=head[x];i;i=e[i].next){
if(e[i].cap&&dis[e[i].v]==dis[x]+1){
t=dfs(e[i].v,T,min(e[i].cap,f));
e[i].cap-=t;e[i^1].cap+=t;
used+=t;f-=t;
if(!f) return used;
}
}
if(!used) dis[x]=-1;
return used;
}
int dinic(int S,int T){
int res=0;
while(bfs(S,T)) res+=dfs(S,T,2e9);
return res;
}
void jud(int x,int y,int v){
if(v<dn[x][y]||v>up[x][y]) flag=1;
}
void Cl(){
tot=1;
memset(in,0,sizeof in);
memset(head,0,sizeof head);
for(int i=0;i<=n;i++){
for(int j=0;j<=n+m+1;j++){
dn[i][j]=0;
up[i][j]=30000;
}
}
}
void work(){
n=read();m=read();
while(n>200||m>20||n<=0||m<=0);
S=n+m+1;T=S+1;SS=S+2;TT=S+3;Cl();
for(int i=1,x;i<=n;i++) x=read(),add(S,i,0),in[S]-=x,in[i]+=x;
for(int i=1,x;i<=m;i++) x=read(),add(i+n,T,0),in[i+n]-=x,in[T]+=x;
k=read();char s[3];flag=0;
for(int i=1,x,y,z,f;i<=k;i++){
x=read();y=read();scanf("%s",s);z=read();
f=s[0]=='>'?0:s[0]=='<'?1:2;
if(x&&y){
if(!f){
dn[x][y+n]=max(z+1,dn[x][y+n]);
}
else if(f&1){
up[x][y+n]=min(z-1,up[x][y+n]);
}
else{
jud(x,y+n,z);
dn[x][y+n]=up[x][y+n]=z;
}
}
if(!x&&y){
if(!f){
for(int j=1;j<=n;j++){
dn[j][y+n]=max(z+1,dn[j][y+m]);
}
}
else if(f&1){
for(int j=1;j<=n;j++){
up[j][y+n]=min(z-1,up[j][y+m]);
}
}
else{
for(int j=1;j<=n;j++){
jud(j,y+n,z);
dn[j][y+n]=up[j][y+n]=z;
}
}
}
if(x&&!y){
if(!f){
for(int j=1;j<=m;j++){
dn[x][j+n]=max(z+1,dn[j][y+m]);
}
}
else if(f&1){
for(int j=1;j<=m;j++){
up[x][j+n]=min(z-1,up[j][y+m]);
}
}
else{
for(int j=1;j<=m;j++){
jud(x,j+n,z);
dn[x][j+n]=up[x][j+n]=z;
}
}
}
if(!x&&!y){
if(!f){
for(int j=1;j<=n;j++){
for(int k=1;k<=m;k++){
dn[j][k+n]=max(z+1,dn[j][k+n]);
}
}
}
else if(f&1){
for(int j=1;j<=n;j++){
for(int k=1;k<=m;k++){
up[j][k+n]=min(z-1,up[j][k+n]);
}
}
}
else{
for(int j=1;j<=n;j++){
for(int k=1;k<=m;k++){
jud(j,k+n,z);
dn[j][k+n]=up[j][k+n]=z;
}
}
}
}
}
for(int i=1;i<=n&&!flag;i++){
for(int j=1;j<=m;j++){
if(up[i][j+n]<dn[i][j+n]){flag=1;break;}
add(i,j+n,up[i][j+n]-dn[i][j+n]);
in[i]-=dn[i][j+n];
in[j+n]+=dn[i][j+n];
}
}
if(flag){puts("IMPOSSIBLE");return ;}
add(T,S,inf);sum=0;
for(int i=1;i<=T;i++){
if(in[i]>0) add(SS,i,in[i]),sum+=in[i];
if(in[i]<0) add(i,TT,-in[i]);
}
if(dinic(SS,TT)!=sum){puts("IMPOSSIBLE");return ;}
int now=S;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
printf("%d",dn[i][j+n]+e[now<<1^1].cap);
if(j!=m) putchar(' ');
now++;
}
putchar('\n');
}
}
int main(){
cas=read();
for(;cas--;cas?putchar('\n'):1) work();
return 0;
}
poj2396 Budget&&ZOJ1994 Budget[有源汇上下界可行流]的更多相关文章
- POJ2396 Budget [有源汇上下界可行流]
POJ2396 Budget 题意:n*m的非负整数矩阵,给出每行每列的和,以及一些约束关系x,y,>=<,val,表示格子(x,y)的值与val的关系,0代表整行/列都有这个关系,求判断 ...
- 有源汇上下界可行流(POJ2396)
题意:给出一个n*m的矩阵的每行和及每列和,还有一些格子的限制,求一组合法方案. 源点向行,汇点向列,连一条上下界均为和的边. 对于某格的限制,从它所在行向所在列连其上下界的边. 求有源汇上下界可行流 ...
- 计蒜客 31447 - Fantastic Graph - [有源汇上下界可行流][2018ICPC沈阳网络预赛F题]
题目链接:https://nanti.jisuanke.com/t/31447 "Oh, There is a bipartite graph.""Make it Fan ...
- poj2396 Budget(有源汇上下界可行流)
[题目链接] http://poj.org/problem?id=2396 [题意] 知道一个矩阵的行列和,且知道一些格子的限制条件,问一个可行的方案. [思路] 设行为X点,列为Y点,构图:连边(s ...
- poj2396有源汇上下界可行流
题意:给一些约束条件,要求算能否有可行流,ps:刚开始输入的是每一列和,那么就建一条上下界相同的边,这样满流的时候就一定能保证流量相同了,还有0是该列(行)对另一行每个点都要满足约束条件 解法:先按无 ...
- 算法复习——有源汇上下界可行流(bzoj2396)
题目: Description We are supposed to make a budget proposal for this multi-site competition. The budge ...
- ZOJ1994有源汇上下界可行流
http://fastvj.rainng.com/contest/236779#problem/G Description: n 行 m 列 给你行和 与 列和 然后有Q个限制,表示特定单元格元素大小 ...
- bzoj 2406 矩阵 —— 有源汇上下界可行流
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2406 这题,首先把题目那个式子的绝对值拆成两个限制,就成了网络流的上下界: 有上下界可行流原 ...
- bzoj千题计划158:bzoj2406: 矩阵(有源汇上下界可行流)
http://www.lydsy.com/JudgeOnline/problem.php?id=2406 设矩阵C=A-B 最小化 C 一行或一列和的最大值 整体考虑一行或者一列的和 二分最大值 这样 ...
随机推荐
- 网页中PNG透明背景图片的完美应用
PNG 图片在网站设计中是不可或缺的部分,最大的特点应该在于 PNG 可以无损压缩,而且还可以设置透明,对于增强网站的图片色彩效果有重要的作用. 但为什么 PNG 图片却没有 GIF 和 JPG 图片 ...
- HTTP长连接?短连接?长轮询?短轮询?
错觉与突然的察觉 大多数人都知道HTTP1.0不支持长连接,知道HTTP1.1支持长连接. 这是业界的一个常识. 然而这样的描述导致了一些不做网络底层开发的开发者都下意识的认为HTTP1.1是一个可以 ...
- 怎么使用Firefox的RestClient
- jQuery新建HTML Element
举个例: 创建一个<i>HelloWorld.</i> var italicText = $("<i></i>").text(&qu ...
- 匈牙利命名法、骆驼命名法、帕斯卡(pascal)命名法 C#命名规范
匈牙利命名法.骆驼命名法.帕斯卡(pascal)命名法 C#命名规范 一.匈牙利命名法:广泛应用于象Microsoft Windows这样的环境中. Windows 编程中用到的变量(还包括宏)的命名 ...
- 如何测试是否安装了web服务器
windows默认没有安装web服务器,我们可以安装IIS. 我们安装个tomacte服务器,开发web程序必须的!!如果测试后出现这个页面说明安装成功le ! 我们这个安装的是本地服务器,可以把we ...
- Mysql研磨之设计索引原则
1.搜索的索引列:最适合索引的列是出现在where子句中的列,或链接子句中指定的列,而不是出现在select关键词后的选择列表中的列 2.使用唯一索引:考虑列中值的分布.索引的列基础越大,索引的效果越 ...
- linux系统中/etc/syslog.conf文件解读
1: syslog.conf的介绍 对于不同类型的Unix,标准UnixLog系统的设置,实际上除了一些关键词的不同,系统的syslog.conf格式是相同的.syslog采用可配置的.统一的系统登记 ...
- MongoDB(一):关系型数据库和非关系型数据库
一.关系型数据库 1.概念 关系型数据库:是指采用了关系模型来组织数据的数据库,是目前各类数据库中使用最为广泛的数据库系统.简单的说,关系模型指的就是二维表格模型,一个关系型数据库就是由二维表及其之间 ...
- python手册
https://www.crummy.com/software/BeautifulSoup/bs4/doc.zh/